[1]Pope, M., Kallmann, H. P., & Magnante, P. (1963). Electroluminescence in organic crystals. The Journal of Chemical Physics, 38(8), 2042-2043.
[2]Tang, C. W., & VanSlyke, S. A. (1987). Organic electroluminescent diodes. Applied physics letters, 51(12), 913-915.
[3]Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., ... & Holmes, A. B. (1990). Light-emitting diodes based on conjugated polymers. Nature, 347(6293), 539-541.
[4]Lee, J. Y., Connor, S. T., Cui, Y., & Peumans, P. (2008). Solution-processed metal nanowire mesh transparent electrodes. Nano letters, 8(2), 689-692.
[5]Adachi, C., Tokito, S., Tsutsui, T., & Saito, S. (1988). Organic electroluminescent device with a three-layer structure. Japanese journal of applied physics, 27(4A), L713.
[6]Era, M., Adachi, C., Tsutsui, T., & Saito, S. (1991). Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter. Chemical physics letters, 178(5-6), 488-490.
[7]Kido, J., Kohda, M., Okuyama, K., & Nagai, K. (1992). Organic electroluminescent devices based on molecularly doped polymers. Applied physics letters, 61(7), 761-763.
[8]Kido, J., Kimura, M., & Nagai, K. (1995). Multilayer white light-emitting organic electroluminescent device. Science-new york then washington-, 1332-1332.
[9]Kido, J., Shionoya, H., & Nagai, K. (1995). Single‐layer white light‐emitting organic electroluminescent devices based on dye‐dispersed poly (N‐vinylcarbazole). Applied physics letters, 67(16), 2281-2283.
[10]Kafafi, Z. H. (Ed.). (2005). Organic electroluminescence. Crc press.
[11]Sze, S. M. (2008). Semiconductor devices: physics and technology. John Wiley & Sons.
[12]Miyata, S. (1997). Organic electroluminescent materials and devices. Crc press.
[13]Sugiyama, K., Yoshimura, D., Miyamae, T., Miyazaki, T., Ishii, H., Ouchi, Y., & Seki, K. (1998). Electronic structures of organic molecular materials for organic electroluminescent devices studied by ultraviolet photoemission spectroscopy. Journal of applied physics, 83(9), 4928-4938.
[14]Chen, X. W., Choy, W. C., Liang, C. J., Wai, P. K. A., & He, S. (2007). Modifications of the exciton lifetime and internal quantum efficiency for organic light-emitting devices with a weak/strong microcavity. Applied physics letters, 91(22), 221112.
[15]Tang, C. W., VanSlyke, S. A., & Chen, C. H. (1989). Electroluminescence of doped organic thin films. Journal of applied physics, 65(9), 3610-3616.
[16]陳金鑫, & 黃孝文. (2005). OLED: 有機電激發光材料與元件. 五南圖書出版股份有限公司.
[17]Förster, T. (1948). Zwischenmolekulare energiewanderung und fluoreszenz. Annalen der physik, 437(1‐2), 55-75.
[18]Dexter, D. L. (1953). A theory of sensitized luminescence in solids. The journal of chemical physics, 21(5), 836-850.
[19]Miyata, S. (1997). Organic electroluminescent materials and devices. Crc press.
[20]Van Slyke, S. A., Chen, C. H., & Tang, C. W. (1996). Organic electroluminescent devices with improved stability. Applied physics letters, 69(15), 2160-2162.
[21]Mashford, B. S., Stevenson, M., Popovic, Z., Hamilton, C., Zhou, Z., Breen, C., ... & Kazlas, P. T. (2013). High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nature photonics, 7(5), 407-412.
[22]Sasabe, H., Nakanishi, H., Watanabe, Y., Yano, S., Hirasawa, M., Pu, Y. J., & Kido, J. (2013). Extremely Low Operating Voltage Green Phosphorescent Organic Light‐Emitting Devices. Advanced functional materials, 23(44), 5550-5555.
[23]Jeon, W. S., Park, J. S., Li, L., Lim, D. C., Son, Y. H., Suh, M. C., & Kwon, J. H. (2012). High current conduction with high mobility by non-radiative charge recombination interfaces in organic semiconductor devices. Organic electronics, 13(6), 939-944.
[24]Cho, S. H., Pyo, S. W., & Suh, M. C. (2012). Low voltage top-emitting organic light emitting devices by using 1, 4, 5, 8, 9, 11-hexaazatriphenylene-hexacarbonitrile. Synthetic metals, 162(3), 402-405.
[25]Van Slyke, S. A., Chen, C. H., & Tang, C. W. (1996). Organic electroluminescent devices with improved stability. Applied physics letters, 69(15), 2160-2162.
[26]Stolka, M., Yanus, J. F., & Pai, D. M. (1984). Hole transport in solid solutions of a diamine in polycarbonate. The journal of physical chemistry, 88(20), 4707-4714.
[27]Shoustikov, A. A., You, Y., & Thompson, M. E. (1998). Electroluminescence color tuning by dye doping in organic light-emitting diodes. IEEE journal of selected topics in quantum electronics, 4(1), 3-13.
[28]Baldo, M. A., Adachi, C., & Forrest, S. R. (2000). Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation. Physical review b, 62(16), 10967.
[29]Sun, Y., & Forrest, S. R. (2007). High-efficiency white organic light emitting devices with three separate phosphorescent emission layers. Applied physics letters, 91(26), 263503.
[30]顧鴻壽. (2001). 光電有機電激發光顯示器技術及應用. 新文京開發.
[31]Bocksrocker, T., Preinfalk, J. B., Asche-Tauscher, J., Pargner, A., Eschenbaum, C., Maier-Flaig, F., & Lemme, U. (2012). White organic lightemitting diodes with enhanced internal and external outcoupling for ultra-efficient light extraction and Lambertian emission. Optics express, 20(106), A932-A940..
[32]Galeotti, F., Mróz, W., Scavia, G., & Botta, C. (2013). Microlens arrays for light extraction enhancement in organic light-emitting diodes: a facile approach. Organic electronics, 14(1), 212-218.
[33]Kim, D. H., Kim, J. Y., Kim, D. Y., Han, J. H., & Choi, K. C. (2014). Solution-based nanostructure to reduce waveguide and surface plasmon losses in organic light-emitting diodes. Organic electronics, 15(11), 3183-3190.
[34]Chen, C. Y., Lee, W. K., Chen, Y. J., Lu, C. Y., Lin, H. Y., & Wu, C. C. (2015). Enhancing Optical Out‐Coupling of Organic Light‐Emitting Devices with Nanostructured Composite Electrodes Consisting of Indium Tin Oxide Nanomesh and Conducting Polymer. Advanced materials, 27(33), 4883-4888.
[35]Kim, K. H., & Park, S. Y. (2016). Enhancing light-extraction efficiency of OLEDs with high-and low-refractive-index organic–inorganic hybrid materials. Organic electronics, 36, 103-112.
[36]黃智國. (2016) “可撓曲式電極與光萃取結構應用於有機電激發光二極體之研究” 中山大學博士論文.[37]陳一帆. (2005) “RF濺鍍式ITO薄膜沉積之後熱處裡效應 ” 中山大學碩士論文.[38]洪培元. (2016) “以內部光萃取結構增進有機電激發光二極體效率之研究” 中山大學碩士論文.