跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/14 22:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃詣强
研究生(外文):Yi-Chiang Huang
論文名稱:部分含氟磺酸化聚芳香醚電解質之製備與燃料電池應用評估
論文名稱(外文):Preparation and Evaluation of Partially Fluorinated Sulfonated poly(arylene ether)s Electrolytes for Fuel Cell Applications
指導教授:黃文堯黃文堯引用關係
指導教授(外文):Wen-Yao Huang
學位類別:博士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:235
中文關鍵詞:部分含氟高分子電解質三氟甲基燃料電池質子交換膜聚芳香醚
外文關鍵詞:TrifluoromethylPartially fluorinated polyelectrolytesPoly(arylene ether)sFuel cellsProton exchange membrane
相關次數:
  • 被引用被引用:1
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
質子交換膜是質子交換膜燃料電池中一個關鍵材料,而在過去數十年已被廣泛的研究。作為質子交換膜必須具備幾樣要素,如良好的機械特性、高化學穩定性以及高質子導電度。已有許多研究指出,部分氟化的高分子電解質相對於非氟化高分子電解質的傳統烴擁有許多先天優勢,優異的熱穩定性、良好的機械性能和相對經濟的價格,以及高疏水特性能提供更好的相分離形態和質子導電度。
本論文欲合成一系列部分含氟磺酸化碳氫高分子電解質。高分子主要由高立體障礙性多苯環結構組成的聚芳香醚,而高分子的主鏈與側鏈上將會引入三氟甲基取代基,並探討三氟甲基以及不同取代基數量對於質子交換膜之特性的影響。這些性質包括熱穩定性、吸水率、機械強度、尺寸穩定性、質子導電性和微相分離型態。最終將評估其作為質子交換膜應用於質子交換膜燃料電池可能性。
Proton exchange membranes as a key component in fuel cells have been widely studying over the past few decades. As proton exchange membranes should have some main characteristics, such as good mechanical properties, low oxidative stability and high proton conductivity. Many researchers have reported that partially fluorinated polymer electrolytes own natural advantage over traditional non-fluorinated hydrocarbon polymer electrolytes in terms of excellent thermal stabilities, good mechanical properties, relative economic cost and high hydrophobic ability can provide better phase separated morphology and proton conductivity.
Herein, a series of novel partially fluorinated sulfonated poly(arylene ether)s were synthesized. The sterically hindered multi-phenylated structure and the trifluoromethyl group were introduced on polymer backbone and phenyl side chain. The effect of trifluoromethyl group and number of trifluoromethyl substituent group on proton exchange membranes were investigated. The properties of these novel sulfonated polymers such as thermal stability, water uptake, mechanical strength, dimensional stability, proton conductivity, and morphology are studied. Finally, the potential of these poly(arylene ether)s for proton exchange membrane fuel cells application are evaluated.
目錄
中文審定書 i
英文審定書 ii
致謝 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 xi
表目錄 xvi
第一章 緒論 1
1-1 前言 1
1-2 燃料電池種類 2
1-3 質子交換膜燃料電池 3
1-4 質子交換膜 5
1-4-1 全氟磺酸離子薄膜 (Perfluorosulfonic Acid Ionomer Membranes) 6
1-4-2 部分氟化高分子(Partially Perfluorinated Acid Ionomer Membranes) 7
1-4-3 非氟磺酸離子薄膜(Nonfluorinated Acid Ionomer Membranes) 7
1-4-4 鹼性離子薄膜(Alkaline Ionomer Membranes) 8
1-4-5 酸-鹼錯合物(Acid-base complexes) 9
1-5 高分子結構設計(Polymer Architectures for PEMs) 10
1-5-1 磺酸化交替型高分子(Sulfonated alternating polymer) 11
1-5-2 磺酸化無規共聚高分子(Sulfonated random copolymer) 12
1-5-3 磺酸化多嵌段共聚高分子(Sulfonated multiblock copolymers) 13
1-5-4 磺酸化分枝型高分子(Sulfonated branched polymers) 14
1-6 文獻回顧 16
1-6-1 磺酸化交替型與共聚型高分子 16
1-6-2 磺酸化多嵌段共聚高分子與局部密集磺酸化高分子 21
1-7 燃料電池市場 26
1-8 研究目的 29
第二章 實驗藥品、儀器與量測 30
2-1 實驗藥品 30
2-2 實驗儀器 32
2-2-1 高磁場液態磁核共振儀器 (Nuclear Magnetic Resonance,NMR) 32
2-2-2 基質輔助雷射脫附游離飛行質譜儀 (MALDI TOF/TOF) 32
2-2-3 凝膠滲透層析儀 (Gel Permeation Chromatography,GPC) 32
2-2-4 傅立葉紅外線光譜儀 (Fourier Transform infrared spectro scopy,FT-IR) 33
2-2-5 熱重量分析儀 (Thermogravimetric Analyzer,TGA) 33
2-2-6 熱示差掃描卡量計 (Differential Scanning Calorimetr,DSC) 33
2-2-7 熱機械分析儀 (Thermal Mechanical Analyzer,TMA) 34
2-2-8 穿透式電子顯微鏡 (Transmission Electron Microscope,TEM) 34
2-2-9 小角度(低掠角/穿透式)X光散射儀 (Grazing Incidence/ Transmission Small-angel X-ray Scattering,SAXS) 34
2-3 量測方式 35
2-3-1 磺酸化後處理 35
2-3-2 離子交換能力測定 (Ion exchange capacity, IEC) 35
2-3-3 吸水率、尺寸安定性測試 (Water uptake, Dimensional stability) 36
2-3-4 Hydration number (λ) 36
2-3-5 氧化、水解穩定性 (Oxidative and hydrolytic stability) 36
2-3-6 質子導電度 (Proton conductivity) 37
2-4 氫氧燃料電池元件 (Fuel Cell) 37
第三章 磺酸化多苯環聚芳香醚薄膜導入三氟甲基取代基之影響 39
3-1 目的 39
3-2 實驗 41
3-2-1 反應流程圖 41
3-2-2 二醇單體合成步驟 44
3-2-3 二氟單體合成步驟 49
3-2-4 高分子聚合步驟 51
3-2-5 高分子薄膜製備 54
3-2-6 高分子磺酸化 54
3-3 結果與討論 56
3-3-1 分子量 56
3-3-2 核磁共振光譜分析(NMR) 56
3-3-3 傅立葉紅外線光譜(FT-IR)分析 59
3-3-4 TGA熱穩定性分析 60
3-3-5 機械強度特性分析 62
3-3-6 吸水率、尺寸安定性以及λ值 65
3-3-7 氧化及水解穩定性 68
3-3-8 質子導電度 69
3-3-9 微相分離型態 70
3-3-10 燃料電池元件 71
3-4 結論 73
第四章 探討三氟甲基取代基數目對於磺酸化聚芳香 醚薄膜特性之影響 74
4-1 目的 74
4-2 實驗 75
4-2-1 反應流程圖 75
4-2-2 多氟單體製備 77
4-2-3 高分子聚合 80
4-2-4 高分子磺酸化 81
4-3 結果與討論 83
4-3-1 分子量、單體與高分子結構鑑定 83
4-3-2 傅立葉紅外線光譜(FT-IR)分析 87
4-3-3 TGA熱穩定性分析 89
4-3-4 機械強度特性分析 93
4-3-5 吸水率、尺寸安定性以及λ值 97
4-3-6 質子導電度 100
4-3-7 微相分離型態 102
4-3-8 小角度X光散射儀 104
4-3-9 燃料電池元件測試 105
4-4 結論 107
第五章 含氟磺酸化多苯環聚芳香醚應用於質子交換膜燃料電池之研究 108
5-1 目的 108
5-2 實驗 109
5-2-1 反應流程圖 109
5-2-2 單體製備 111
5-2-3 高分子聚合 113
5-2-4 磺酸化反應 115
5-3 結果與討論 116
5-3-1 分子量 116
5-3-2 單體與高分子結構鑑定 117
5-3-3 FT-IR分析 119
5-3-4 熱穩定性分析 121
5-3-5 機械強度分析 123
5-3-6 吸水率與穩定性量測 124
5-3-7 氧化與水解穩定性 126
5-3-8 質子導電度 127
5-3-9 微相分離型態 129
5-3-10 燃料電池元件效率 130
5-4 結論 131
第六章 部分含氟之無規共聚磺酸化聚芳香醚薄膜之合成與特性研究 132
6-1 目的 132
6-2 實驗 133
6-2-1 反應流程 133
6-2-2 多氟單體製備 135
6-2-3 高分子聚合 137
6-2-4 高分子磺酸化 139
6-3 結果與討論 141
6-3-1 分子量與結構鑑定 141
6-3-2 熱穩定性分析 146
6-3-3 機械強度分析 146
6-3-4 吸水率與穩定性量測 148
6-3-5 氧化與水解穩定性 150
6-3-6 質子導電度 151
6-3-7 微結構分析 153
6-3-8 燃料電池元件 154
6-4 結論 155
第七章 總結 156
第八章 參考文獻 158
附錄(依章節排序) 163
A-1 MALDI-TOF MASS 163
A-2 核磁共振光譜 169
Publication 214
1.T. J. Peckham and S. Holdcroft, Advanced materials, 2010, 22, 4667-4690.
2.B. C. H. Steele and A. Heinzel, Nature, 2001, 414, 345-352.
3.A. Kraytsberg and Y. Ein-Eli, Energy & Fuels, 2014, 28, 7303-7330.
4.R. Devanathan, Energy & Environmental Science, 2008, 1, 101-119.
5.K. D. Kreuer, Journal of Membrane Science, 2001, 185, 29-39.
6.W. H. J. Hogarth, J. C. Diniz da Costa and G. Q. Lu, Journal of Power Sources, 2005, 142, 223-237.
7.G. A. Ludueña, T. D. Kühne and D. Sebastiani, Chemistry of Materials, 2011, 23, 1424-1429.
8.P. Choi, N. H. Jalani and R. Datta, Journal of The Electrochemical Society, 2005, 152, 123-130.
9.K. D. Kreuer, S. J. Paddison, E. Spohr and M. Schuster, Chemical reviews, 2004, 104, 4637-4678.
10.M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla and J. E. McGrath, Chemical reviews, 2004, 104, 4587.
11.N. Awang, A. F. Ismail, J. Jaafar, T. Matsuura, H. Junoh, M. H. D. Othman and M. A. Rahman, Reactive and Functional Polymers, 2015, 86, 248-258.
12.K. A. Mauritz and R. B. Moore, Chemical reviews, 2004, 104, 4535-4585.
13.Y. Zhang, J. Li, L. Ma, W. Cai and H. Cheng, Energy Technology, 2015, 3, 675-691.
14.M. Sankir, Y. S. Kim, B. S. Pivovar and J. E. McGrath, Journal of Membrane Science, 2007, 299, 8-18.
15.S. J. Peighambardoust, S. Rowshanzamir and M. Amjadi, International Journal of Hydrogen Energy, 2010, 35, 9349-9384.
16.H. Zhang and P. K. Shen, Chemical reviews, 2012, 112, 2780-2832.
17.H. Zhang and P. K. Shen, Chemical Society reviews, 2012, 41, 2382-2394.
18.X. Li, L. Wang and S. Cheng, Journal of Applied Polymer Science, 2015, 132, 41525-41533.
19.J. Zhou, M. Unlu, J. A. Vega and P. A. Kohl, Journal of Power Sources, 2009, 190, 285-292.
20.R. Y. M. Huang, P. Shao, C. M. Burns and X. Feng, Journal of Applied Polymer Science, 2001, 82, 2651-2660.
21.T. Higashihara, K. Matsumoto and M. Ueda, Polymer, 2009, 50, 5341-5357.
22.D. G. Bucknall and H. L. Anderson, Science, 2003, 302, 1904-1905.
23.T. Nakagawa, K. Nakabayashi, T. Higashihara and M. Ueda, Journal of Materials Chemistry, 2010, 20, 6662-6667.
24.K. Miyatake, Y. Chikashige, E. Higuchi and M. Watanabe, Journal of the American Chemical Society, 2007, 3879-3887.
25.F. Wang, M. Hickner, Y. S. Kima, T. A. Zawodzinski and J. E. McGrath, Journal of Membrane Science, 2002, 197, 231-242.
26.M. J. Park, A. J. Nedoma, P. L. Geissle, A. Jackson, D. Cookson and N. P. Balsara, Macromolecules, 2008, 41, 2271-2277.
27.H. Ghassemi, J. E. McGrath and T. A. Zawodzinski, Polymer, 2006, 47, 4132-4139.
28.K. Matsumoto, T. Higashihara and M. Ueda, Macromolecules, 2008, 41, 7560-7565.
29.Kenji Miyatake, Y. Chikashige and M. Watanabe, Macromolecules, 2003, 36, 9691-9693.
30.K. Miyatake, B. Bae and M. Watanabe, Polymer Chemistry, 2011, 2, 1919-1929.
31.B. Liu, G. P. Robertson, D.-S. Kim, M. D. Guiver, W. Hu and Z. Jiang, Macromolecules, 2007, 40, 1934-1944.
32.D. S. Kim, G. P. Robertson, Y. S. Kim and M. D. Guiver, Macromolecules, 2009, 42, 957-963.
33.C. Wang, N. Li, D. W. Shin, S. Y. Lee, N. R. Kang, Y. M. Lee and M. D. Guiver, Macromolecules, 2011, 44, 7296-7306.
34.A. K. Mohanty, E. A. Mistri, A. Ghosh and S. Banerjee, Journal of Membrane Science, 2012, 409-410, 145-155.
35.R. Mukherjee, S. Banerjee, H. Komber and B. Voit, Journal of Membrane Science, 2016, 510, 497-509.
36.T. J. Skalski, B. Britton, T. J. Peckham and S. Holdcroft, Journal of the American Chemical Society, 2015, 137, 12223-12226.
37.J. Miyake, M. Sakai, M. Sakamoto, M. Watanabe and K. Miyatake, Journal of Membrane Science, 2015, 476, 156-161.
38.Y. D. Lim, D. W. Seo, S. H. Lee, M. A. Hossain, K. Kang, H. Ju and W. G. Kim, International Journal of Hydrogen Energy, 2013, 38, 631-639.
39.S. Matsumura, A. R. Hlil, C. Lepiller, J. Gaudet, D. Guay, Z. Shi, S. Holdcroft and A. S. Hay, Macromolecules, 2008, 41, 281-284.
40.S. Tian, Y. Meng and A. S. Hay, Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47, 4762-4773.
41.Shuanghong Tian, Yuezhong Meng and A. S. Hay, Macromolecules, 2009, 42, 1153-1160.
42.D. Chen, S. Wang, M. Xiao, Y. Meng and A. S. Hay, Journal of Materials Chemistry, 2011, 21, 12068-12077.
43.K. Matsumoto, T. Higashihara and M. Ueda, Macromolecules, 2009, 42, 1161-1166.
44.K. S. Yoon, J. Y. Lee, T.-H. Kim, D. M. Yu, S.-K. Hong and Y. T. Hong, European Polymer Journal, 2015, 66, 1-11.
45.S. G. Jo, T.-H. Kim, S. J. Yoon, S.-G. Oh, M. S. Cha, H. Y. Shin, J. M. Ahn, J. Y. Lee and Y. T. Hong, Journal of Membrane Science, 2016, 510, 326-337.
46.S. Curtin and J. Gangi, FUEL CELL TECHNOLOGIES MARKET REPORT 2015, Department of Energy, Fuel Cell Technologies Office, Washington, D.C., 2016.
47.http://global.kyocera.com/news/2012/0305_woec.html
48.Z. Bai, J. A. Shumaker, M. D. Houtz, P. A. Mirau and T. D. Dang, Polymer, 2009, 50, 1463-1469.
49.D. Kim, G. Robertson, M. Guiver and Y. Lee, Journal of Membrane Science, 2006, 281, 111-120.
50.M. G. Dhara and S. Banerjee, Progress in Polymer Science, 2010, 35, 1022-1077.
51.H. F. Lee, P. H. Wang, Y. C. Huang, W. H. Su, R. Gopal, C. C. Lee, S. Holdcroft and W. Y. Huang, Journal of Polymer Science Part A: Polymer Chemistry, 2014, 52, 2579-2587.
52.T. Mikami, K. Miyatake and M. Watanabe, ACS applied materials & interfaces, 2010, 2, 1714-1721.
53.K. Miyatake, K. Oyaizu, E. Tsuchida and A. S. Hay, Macromolecules, 2001, 34, 2065-2071.
54.A. A. Goodwin, F. W. Mercer and M. T. McKenzie, Macromolecules, 1997, 30, 2767-2774.
55.H. C. Lee, H. S. Hong, Y.-M. Kim, S. H. Choi, M. Z. Hong, H. S. Lee and K. Kim, Electrochimica Acta, 2004, 49, 2315-2323.
56.E. P. Jutemar and P. Jannasch, ACS applied materials & interfaces, 2010, 2, 3718-3725.
57.C.-C. Lee and W.-Y. Huang, Polymer Journal, 2010, 43, 180-185.
58.W. Y. Huang and S. Y. Huang, Macromolecules, 2010, 43, 10355-10365.
59.W. Y. Huang, M. Y. Chang, Y. K. Han and P. T. Huang, Journal of Polymer Science Part A: Polymer Chemistry, 2010, 48, 5872-5884.
60.D. S. Kim, G. P. Robertson and M. D. Guiver, Macromolecules, 2008, 41, 2126-2134.
61.H. F. Lee, Y. C. Huang, P. H. Wang, C. C. Lee, Y. S. Hung, R. Gopal, S. Holdcroft and W. Y. Huang, Materials Today Communications, 2015, 3, 114-121.
62.J. Pang, K. Shen, D. Ren, S. Feng, Y. Wang and Z. Jiang, Journal of Materials Chemistry A, 2013, 1, 1465-1474.
63.B. Bae, K. Miyatake and M. Watanabe, Journal of Membrane Science, 2008, 310, 110-118.
64.Y. C. Huang, R. H. Tai, H. F. Lee, P. H. Wang, R. Gopal, C. C. Lee, M. Y. Chang and W. Y. Huang, International Journal of Polymer Science, 2016, 2016, 1-8.
65.B. Bae, K. Miyatake, M. Uchida, H. Uchida, Y. Sakiyama, T. Okanishi and M. Watanabe, ACS applied materials & interfaces, 2011, 3, 2786-2793.
66.Dae Sik Kim, G. P. Robertson, Y. S. Kim and M. D. Guiver, Macromolecules, 2009, 42, 957-963.
67.A. Singh, R. Mukherjee, S. Banerjee, H. Komber and B. Voit, Journal of Membrane Science, 2014, 469, 225-237.
68.J. Peron, A. Mani, X. Zhao, D. Edwards, M. Adachi, T. Soboleva, Z. Shi, Z. Xie, T. Navessin and S. Holdcroft, Journal of Membrane Science, 2010, 356, 44-51.
69.S. Feng, G. Wang, H. Zhang and J. Pang, Journal of Materials Chemistry A, 2015, 3, 12698-12708.
70.J. Pang, X. Jin, Y. Wang, S. Feng, K. Shen and G. Wang, Journal of Membrane Science, 2015, 492, 67-76.
71.B.-K. Chen, J.-M. Wong, T.-Y. Wu, L.-C. Chen and I. C. Shih, Polymers, 2014, 6, 2720-2736.
72.X. Wang, H. Zhang and S. C. Jana, Journal of Materials Chemistry A, 2013, 1, 13989.
73.L. Chen, S. Zhang, Y. Jiang and X. Jian, RSC Advances, 2016, 6, 75328-75335.
74.S. Lee, J. Ann, H. Lee, J.-H. Kim, C.-S. Kim, T.-H. Yang and B. Bae, Journal of Materials Chemistry A, 2015, 3, 1833-1836.
75.Y. Gao, G. P. Robertson, D.-S. Kim, M. D. Guiver, S. D. Mikhailenko, X. Li and S. Kaliaguine, Macromolecules, 2007, 40, 1512-1520.
76.A. Singh, S. Banerjee, H. Komber and B. Voit, RSC Advances, 2016, 6, 13478-13489.
77.D. W. Shin, S. Y. Lee, N. R. Kang, K. H. Lee, M. D. Guiver and Y. M. Lee, Macromolecules, 2013, 46, 3452-3460.
78.R. Mukherjee, A. K. Mohanty, S. Banerjee, H. Komber and B. Voit, Journal of Membrane Science, 2013, 435, 145-154.
79.C. Fang, X. N. Toh, Q. Yao, D. Julius, L. Hong and J. Y. Lee, Journal of Power Sources, 2013, 226, 289-298.
80.Y.-C. Huang, H.-F. Lee, Y.-C. Tseng, C.-C. Lee, M.-Y. Chang and W.-Y. Huang, RSC Advances, 2017, 7, 33068-33077.
81.S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver and S. Kaliaguine, Journal of Membrane Science, 2000, 173, 17-34.
82.S. Guhathakurta and K. Min, Journal of Applied Polymer Science, 2010, 115, 2514-2522.
83.D. Chen, S. Kim, L. Li, G. Yang and M. A. Hickner, RSC Advances, 2012, 2, 8087.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊