|
[1]G. Saxby and S. Zacharovas, Practical Holography. 4th ed, Crc Taylor and Francis Group, 2015. [2]E. Hecht, Optics. 4th ed, Addison Wesley, 1990. [3]M. A. Golub, L. L. Doskolovich, N. L. Kazanskiy, S. I. Kharitonov, and V. A. Soifer, “Computer generated diffractive multi-focal lens,” J. Mod. Opt., vol. 39, pp. 1245-1251, 1992. [4]Y. Zhao, S. S. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, “Beam bending via plasmonic lenses,” Opt. Express, vol. 18, pp. 23458-23465, 2010. [5]K. Goto, Y. Kim, T. Kirigaya, and Y. Masuda, “Near-field evanescent wave enhancement with nanometer-sized metal grating and micro lens array in parallel optical recording head,” Jpn. Appl. Phys., vol. 43, pp. 5814-5818, 2004. [6]J. Park, G. Kim, H. Park, J. Joo, S. Kim, and M. Kwack, “Performance improvement in silicon arrayed waveguide grating by suppression of scattering near the boundary of a star coupler,” Appl. Phys. Lett., vol. 54, pp. 5597-5602, 2015. [7]C. Hu and D. Liu, “High-performance grating coupled surface plasmon resonance sensor based on Al-Au bimetallic layer,” Mod. Appl. Sci., vol. 4, pp. 8-13, 2010. [8]G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett., vol. 89, pp. 141120, 2014. [9]G. Zheng, L. Xu, M. Lai, Y. Chen, Y. Liu, and X. Li, “Broadband light absorption enhancement in thin-film silicon solar cells,” Opt. Commun., vol. 285, pp. 2755-2759, 2012.
[10]Y. Fan, H. Ren, and S. Wu, “Switchable fresnel lens using polymer-stabilized liquid crystals,” Opt. Express, vol. 11, pp. 3080-3086, 2003. [11]D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications. 1st ed, Cambridge University Press, 2007. [12]P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Laser direct writing of volume modified Fresnel zone plates,” J. Opt. Soc. Am. B, vol. 24, pp. 2090-2096, 2007. [13]M. Honma and T. Nose, “Liquid-crystal fresnel zone plate fabricated by microrubbing,” Jpn. J. Appl. Phys., vol. 44, pp. 287-290, 2005. [14]F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express, vol. 18, pp. 12606-12614, 2010. [15]J. H. Lee, J. W. Yoon, M. J. Jung, J. K. Hong, S. H. Song, and R. Magnusson, “A semiconductor metasurface with multiple functionalities: a polarizing beam splitter with simultaneous focusing ability,” Appl. Phys. Lett., vol. 104, pp. 233505, 2014. [16]B. Hu, Q. J. Wang, and Y. Zhang, “Systematic study of the focal shift effect in planar plasmonic slit lenses,” Nano Technol., vol. 23, pp. 444002, 2012. [17]S. Jia, X. Wang, Y. Wu, M. Xiao, P. Fan, and Z. Wang, “Active control of beams by metallic nanoslit array lens with movable dielectric substrate,” Appl. Phys. Express, vol. 8, pp. 062001, 2015. [18]R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. London, vol. 18, pp. 269-275, 1902. [19]U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces,” J. Opt. Soc. Am., vol. 31, pp. 213-222, 1941. [20]H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Grating. 1st ed, Springer-Verlag, 1988.
[21] A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys., vol. 216, pp. 398-410, 1968. [22]E. Keretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch, vol. 23, pp. 2135-2136, 1968. [23]M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S. H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Proc. of SPIE., vol. 7505, pp. 750501, 2009. [24]L. Wen, F. Sun, and Q. Chen, “Cascading metallic gratings for broadband absorption enhancement in ultrathin plasmonic solar cells,” Appl. Phys. Lett., vol. 104, pp. 151106, 2014. [25]R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nature Photon., vol. 2, pp. 496-500, 2008. [26]W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, pp.824-830, 2003. [27]A. V. Zayatsa, I. I. Smolyaninovb, and A. A. Maradudinc, “Nano-optics of surface plasmon polaritons,” Phys. Rev., vol. 408, pp. 131-314, 2005. [28]M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express, vol. 22, pp. 12307-12315, 2014. [29]P. G. Hermannsson, K. T. Sørensen, C. Vannahme, C. L. C. Smith, J. J. Klein, M. Russew, G. Grutzner, and A. Kristensen, “All-polymer photonic crystal slab sensor,” Opt. Express, vol. 23, pp. 16529-16539, 2015. [30]S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science, vol. 272, pp. 85-87, 1996. [31]M. Etter and R. E. Dinnebier, A Century of Powder Diffraction: a Brief History. 1st ed, Wiley-VCH, 2014. [32]J. W. Goodman, Introduction to Fourier Optics. 3rd ed, McGraw Hill, 1996. [33]F. A. Jenkins and H. E. White, Fundamentals of Optics. 4th ed, McGraw Hill, 2011. [34]E. W. March and E. Wolf, “Consistent formulation of kirchhoffs diffraction theory,” J. Opt. Soc. Am., vol. 56, pp. 1712-1722, 1966. [35]E. Wolf and E. W. Marchand, “Comparison of the Kirchhoff and Rayleigh-Sommerfeld theories of diffraction at an aperture,” J. Opt. Soc. Am., vol. 54, pp. 587-594, 1964. [36]H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev., vol. 66, pp. 163-182, 1944. [37]C. J. Bouwkamp, “On Bethe’s theory of diffraction by small holes,” Philips Res. Rep., vol. 5, pp. 321-332, 1950. [38]T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, vol. 391, pp.667-669, 1998. [39]E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photon., vol. 2, pp. 161-164, 2008. [40]L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett., vol. 9, pp. 235-238, 2009. [41]Y. Liang, W. Peng, R. Hu, and H. Zou, “Extraordinary optical transmission based on subwavelength metallic grating with ellipse walls,” Opt. Express, vol. 21, pp. 6139-6152, 2013. [42]L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B, vol. 71, pp. 041405, 2005.
[43]P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett., vol. 88, pp. 031101, 2006. [44]H. Nasari and M. S. Abrishamian, “Electrically tunable light focusing via a plasmonic lens,” J. Opt., vol. 14, pp. 125002, 2012. [45]F. Hao, R. Wang, and J. Wang, “Design and characterization of a micron-focusing plasmonic device,” Opt. Express, vol. 18, pp. 15741-15746, 2010. [46]Y. Yu and H. Zappe, “Effect of lens size on the focusing performance of plasmonic lenses and suggestions for the design,” Opt. Express, vol. 19, pp. 9434-9444, 2011. [47]A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir, vol. 20, pp. 4813-4815, 2004. [48]K. L. Lee, C. W. Lee, W. S. Wang, and P. K. Wei, “Sensitive biosensor array using surface plasmon resonance on metallic nanoslits,” J. Biomed. Opt., vol. 12, pp. 044023, 2007. [49]Sopra S. A. company. (1995). n, k database. Message posted to http://www.ioffe.ru/SVA/NSM/nk/ [50]E. Kang, J. Park, and B. Bae, “Effect of organic modifiers on the thermo-optic characteristics of inorganic–organic hybrid material films,” J. Mater. Res., vol. 8, pp. 1889-1894, 2003.
|