跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/25 07:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林冠廷
研究生(外文):Kuan-Ting Lin
論文名稱:改良之利用雙馬赫-桑德干涉儀結構的光纖感測器
論文名稱(外文):Improved Fiber Sensor by Using a Double-MZI Structure
指導教授:于欽平
指導教授(外文):Chin-Ping,Yu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:67
中文關鍵詞:錯位錐狀光纖感測器Mach-Zehnder光纖干涉儀單模光纖
外文關鍵詞:single mode fiberoffsettaperMach-Zehnder interferometerfiber sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出錯位熔接及推擠熔接之雙Mach-Zehnder光纖干涉儀感測器,可用於感測外在環境溫度、折射率及應力,其製作方式簡單,只需要切割及熔接。我們藉由在元件正中央加taper的方式來增加干涉頻譜的消光比及自由頻譜寬度,其消光比最大可至20dB,並可提高一般Mach-Zehnder光纖干涉儀感測器對環境的靈敏度。
我們藉由改變環境參數來觀察雙Mach-Zehnder光纖干涉儀的頻譜變化,並經由實驗可得錯位熔接之雙Mach-Zehnder光纖干涉儀感測器對溫度的靈敏度為75.8pm/°C,折射率靈敏度為-26.4nm/RIU,及應變靈敏度為0.002dB/με。而推擠熔接的雙Mach-Zehnder光纖干涉儀感測器對溫度的靈敏度為80pm/°C,折射率靈敏度為-110nm/RIU,及應變靈敏度為-0.09dB/με。由實驗結果可知,由推擠熔接的方式所製作之雙Mach-Zehnder光纖干涉儀感測器在環境感測上有較好的響應。本論文所提出的雙Mach-Zehnder光纖干涉儀感測器相較於一般的單Mach-Zehnder光纖干涉儀感測器在溫度、折射率及應力的量測上都具有較高的靈敏度,並能增加量測的精確度及可量測範圍。
We propose a double-MZI fiber sensor made by offset fusing and overlap fusing. They can be used for environment sensing, including temperature, refractive index, and strain. The fabrication method is very simple, containing only cutting and fusing. By introducing a taper in the middle of a MZI, we can increase the extinction ratio and free spectrum range of the interference spectrum. The largest extinction ratio is 20dB, which can improve the sensitivity of normal fiber MZI sensors.
By changing the parameters of environment, we can observe the variation of the spectrum of a double-MZI fiber sensor. Experiment results show that the sensitivities of temperature, refractive index, and strain of the double-MZI fiber sensor with offset fusing are 75.8pm/°C, -26.4nm/RIU, and 0.002dB/με, respectively. And the sensitivities of temperature, refractive index, and strain of the double-MZI fiber sensor with overlap fusing are 80pm/°C, -110nm/RIU, and -0.09dB/με, respectively. According to the experiment results, we can obtain a better sensing response for the double-MZI fiber sensor with overlap fusing. The proposed double-MZI fiber sensors have higher sensitivities when measuring temperature, refractive index, and strain than a single-MZI fiber sensor. In addition, the double-MZI fiber sensors can also improve the sensing accuracy and measurement range.
目錄
誌謝 i
中文摘要 ii
Abstract iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1-1 光纖感測器 1
1-2 光纖干涉儀的種類 3
1-2.1 法不立培若光纖干涉儀(Fiber Fabry-Pérot interferometer) 3
1-2.2 馬赫-桑德光纖干涉儀(Fiber Mach-Zehnder interferometer) 5
1-2.3 麥克森光纖干涉儀(Fiber Michelson interferometer) 7
1-2.4 薩格奈克光纖干涉儀(Fiber Sagnac interferometer) 8
1-3 研究動機 10
第二章 Mach-Zehnder光纖干涉儀 11
2-1 Mach-Zehnder光纖干涉儀 11
2-2 雙Mach-Zehnder光纖干涉儀 16
第三章 雙Mach-Zehnder光纖干涉儀之製作 19
3-1 錯位熔接雙Mach-Zehnder光纖干涉儀之製作 20
3-1.1 材料介紹 20
3-1.2 元件製作 21
3-2 推擠熔接雙Mach-Zehnder光纖干涉儀製作 25
第四章 錯位熔接結合taper之雙Mach-Zehnder光纖干涉儀感測器 28
4-1 基本特性量測 28
4-1.1實驗架設 28
4-1.2元件量測結果與討論 29
4-2 感測特性量測 31
4-2.1 溫度感測特性 31
4-2.2 折射率感測特性 35
4-2.3 應力感測特性 39
第五章 推擠熔接結合taper之雙Mach-Zehnder光纖干涉儀感測器 42
5-1 基本特性量測 42
5-1.1 實驗架設 42
5-1.2 元件量測與結果討論 43
5-2 感測特性量測 46
5-2.1 溫度感測特性 46
5-2.2 折射率感測特性 48
5-2.3 應力感測特性 50
第六章 結論 52
參考文獻 53
參考文獻
[1]K. C. Kao and G. A. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proc. IEE-London, vol. 113, pp. 1151-1158, 1966.
[2]L. Li, Z. Feng, X. Qiao, H. Yang, R. Wang, D. Su, Y. Wang, W. Bao, J. Li, Z. Shao, and M. Hu, “Ultrahigh sensitive temperature sensor based on Fabry–Pérot interference assisted by a graphene diaphragm,” IEEE Sens. J., vol. 15, pp. 505-509, 2015.
[3]C. R. Liao, H. F. Chen, and D. N. Wang, “Ultracompact optical fiber sensor for refractive index and high temperature measurement,” J. Lightw. Technol., vol. 32, pp. 2531–2535, 2014.
[4]W. Shin, Y. L. Lee, B. A. Yu, Y. C. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensors based on in-line fiber Mach–Zehnder in solid core large mode area photonic crystal fiber,” Opt. Commun., vol. 283, pp. 2097-2101, 2010.
[5]H. Gong, H. Song, S. Zhang, and Y. Jin, “Curvature sensor based on hollow-core photonic crystal fibre Sagnac interferometer,” IEEE Sensors J., vol. 14, pp. 777-780, 2014.
[6]B. Gu, M. Yin, A. P. Zhang, J. Qian, and S. He, “Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer,” Opt. Exp., vol. 19, pp. 4140-4146, 2011.
[7]J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photon. Technol. Lett., vol. 23, pp. 1561-1563, 2011.
[8]C. L. Lee, Y. N. Tsai, G-H. Chen, Y-J. Xiao, J-M. Hsu, and J-S. Horng, “Refined bridging of microfiber plugs in hollow core fiber for sensing acoustic vibrations,” IEEE Photon. Technol. Lett., vol. 27, pp. 2403-2406, 2015.
[9]S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry–Pérot interferometer,” Opt. Lett., vol. 39, pp. 2121-2124, 2014.
[10]G. Zhang, M. Yang, and M. Wang, “Large temperature sensitivity of fiber-optic extrinsic Fabry–Pérot interferometer based on polymer-filled glass capillary,” Opt. Fiber Technol., vol. 19, pp. 618-622, 2013.
[11]T. Wei, Y. Han, Y. Li, H.-L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry–Pérot interferometer for highly sensitive refractive index measurement,” Opt. Exp., vol. 16, pp.5764-5769, 2008.
[12]S. N. Wu, G. F. Yan, B. Zhou, E. H. Lee, and S. L. He, “Open-cavity Fabry–Pérot interferometer based on etched side-hole fiber for microfluidic sensing,” IEEE Photon. Technol. Lett., vol. 27, pp.1813-1816, 2015.
[13]H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach–Zehnder type interferometers formed in photonic crystal fiber,” Opt. Exp., vol. 15, pp. 5711-5720, 2007.
[14]Y. Wang, C. Shen, W. Lou, and F. Shentu, “Intensity modulation type fiber-optic strain sensor based on a Mach–Zehnder interferometer constructed by an up-taper with a LPG,” Opt. Commun., vol. 364, pp. 72-75, 2016.
[15]J. Zhou, Y. Wang, C. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Li, G. Wang, X. Zhong, and J. Zhao, “Intensity modulated refractive index sensor based on optical fiber Michelson interferometer,” Sens. Actuators B, Chem., vol. 208, pp. 315-319, 2014.
[16]B. Xu, C. L. Zhao, F. Yang, H. P. Gong, D. N. Wang, J. X. Dai, and M. H. Yang, “Sagnac interferometer hydrogen sensor based on panda fiber with Pt-loaded WO3/SiO2 coating,” Opt. Lett., vol. 41, pp. 1594-1597, 2016.
[17] Z. Ludwig, “Ein neuer Interferenzrefraktor,” Zeitschrift für Instrumentenkunde, vol. 11, pp. 275–285, 1891.
[18] M. Ludwig, “Ueber einen Interferenzrefraktor,” Zeitschrift für Instrumentenkunde, vol. 12, pp. 89-93, 1892.
[19]D. Malacara, M. Servin, and Z. Malacara, Interferogram analysis for optical testing, Taylor & Francis Group, New York, 2005.
[20]L. M. Hu, C. C. Chan, X. Y. Dong, Y. P. Wang, P. Zu, W. C. Wong, W. W. Qian, and T. Li, “Photonic crystal fiber strain sensor based on modified Mach–Zehnder interferometer,” IEEE Photon. J., vol. 4, pp. 114-118, 2012.
[21]W. M. B. Yunus and A. B. Rahman, “Refractive index of solutions at high-concentrations,” Appl. Opt., vol. 27, pp. 3341-3343, 1988.
[22]C. Y. Lin, L. A. Wang, and G. W. Chern, “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” J. Lightw. Technol., vol.19, pp. 1159-1168, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊