[1]J. Galan, L. Samek, P. Verleysen, K. Verbeken, Y. Houbaert, Advanced high strength steels for automotive industry, Rev. Metal. Madrid.,48.2 (2012) 118-31
[2]"ULSAB-AVC body structure materials", Technical transfer dispath NO.6, World Steel Association, (2001)
[3]H. Aydin, E. Essadiqi, In-Ho Jung, S. Yue, Development of 3rd generation AHSS with medium Mn content alloying compositions, Mater. Sci. Eng. A, 564 (2013) 501-8.
[4]J. Mahieu, J. Maki, B. C. De Cooman, S. Claessens, Phase transformation and mechanical properties of Si-free CMnAl transformation-induced plasticity–aided steel, Metall. Mater. Trans. A, 33A (2002) 2573-80.
[5]M. De Meyer, D. Vanderschueren, B.C. De Cooman, The influence of the substitution of Si by Al on the properties of cold rolled C-Mn-Si TRIP steels, ISIJ Int., 39 (1999) 813-22.
[6]J. Mahieu, S. Claessens, B. C. De Cooman, Galvanizability of high-strength steels for automotive applications, Metall. Mater. Trans. A, 32A (2001) 2905-8
[7]E. M. Bellhouse, J. R. McDermid, Effect of continuous galvanizing heat treatments on the microstructure and mechanical properties of high Al-low Si transformation induced plasticity steels, Metall. Mater. Trans. A, 41A (2010) 1460-73.
[8]V. F. Zacky, E. R. Parker, D. Fahr, R. Busch, The enhancement of ductility in high-strength steels , ASM Trans. Q., 60 (1967) 252-9.
[9]H. K. D. H. Bhadeshia, TRIP-Assisted Steels, ISIJ Int., 42 (2002) 1059-60.
[10]P. J. Jacques, Transformation-induced plasticity for high strength formable steels, Curr. Opin. Solid St. M., 8 (2004) 259-65.
[11]徐銘鍾,錳矽鋼材的機械性質與顯微組織的研究,碩士論文,高雄,國立中山大學材料與光電科學學系研究所,(2014)[12]馬楷軒,熱處理對錳鋁鋼機械性質之影響,碩士論文,高雄,國立中山大學材料與光電科學學系研究所,(2014)[13]歐志鴻,退火處理對中錳含量鋼材之微觀組織與拉伸性質的影響,碩士論文,高雄,國立中山大學材料與光電科學學系研究所,(2013)[14]周紹誠,熱處理對鐵錳合金鋼機械性質之影響,碩士論文,高雄,國立中山大學材料與光電科學學系研究所,(2014)[15]B. S. Chul, K. Seongju, J. Y. Sool, K. Ohjoon, Effects of alloying elements on mechanical properties and phase transformation of cold rolled TRIP steel sheets, ISIJ Int., 41 (2001) No. 3, 290-7.
[16]C. G. Lee, S. J. Kim, C. S. Oh, S. Lee, Effects of heat treatment and Si addition on the mechanical properties of 0.1 wt% C TRIP-aided cold-rolled steels, ISIJ Int., 42 (2002) No. 10, 1162–8.
[17]Y. Sakuma, O. Matsumura, H. Takechi, Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions , Metall. Trans. A, 22 (1991) 489-98.
[18]L. Samek, E. De Moor, J. Penning, B. C. De Cooman, Influence of alloying elements on the kinetics of strain-induced martensitic nucleation in low-alloy, multiphase high-strength steels, Metall. Mater. Trans. A, 37A (2006) 109-24.
[19]L. Tsukatani, S. Hashimoto, T. Inoue, Effects of silicon and manganese addition on mechanical properties of high-strength hot-rolled sheet steel containing retained austenite, ISIJ Int., 31 (1991) 992-1000.
[20]T. Bhattacharyya, S. B. Singh, S. Das, A. Haldar, D. Bhattacharjee, Development and characterisation of C-Mn-Al-Si-Nb TRIP aided steel, Mater. Sci. Eng. A, 528 (2011) 2394-400.
[21]R. Abbaschian, L. Abbaschian, R. E. Reed-Hill, Physical Metallurgy Principles, forth ed., Cengage Learning, Stamford, 2008.
[22]S. Li, R. Zhu, I. Karaman, R. Arroyave, Development of a kinetic model for bainitic isothermal transformation in transformation-induced plasticity steels, Acta Mater., 61 (2013) 2884-94.
[23]H. K. D. H. Bhadeshia, Thermodynamic analysis of isothermal transformation diagrams, Met. Sci., 16 (1982) 159-66.
[24]H. K. D. H. Bhadeshia, A rationalization of shear transformations in steels, Acta Metall., 29 (1981) 1117-30.
[25]P. J. Jacques, E. Girault, A. Mertens, B. Verlinden, J. V. Humbeeck, F. Delannay, Bainite transformation of low carbon Mn–Si TRIP-assisted multiphase steels: influence of silicon content on cementiteprecipitation and austenite retention , ISIJ Int., 41 (2001) 1068.
[26]王涵聖,沃斯田鐵在不銹鋼及合金鋼之Displactive相變態與其衍生之顯微組織研究,博士論文,台北,國立台灣大學材料科學與工程學研究所,(2005)[27]J. Bouquerel, K. Verbeken, B. C. De Cooman, Microstructure-based model for the static mechanical behavior of multiphase steels , Acta Mater., 54 (2006) 1443-56.
[28]J. Chiang, B. Lawrence, J. D. Boyd, A. K. Pilkey, Effect of microstructure on retained austenite stability and work hardening of TRIP steels , Mater. Sci. Eng. A, 528 (2011) 4516-21.
[29]Z. Q. Liu, G. Miyamoto, Z. G. Yang, T. Furuhara, Direct measurement of carbon enrichment during austenite to ferrite transformation in hypoeutectoid Fe-2Mn-C alloys , Acta Mater., 61 (2013) 3120-9.
[30]J. Lis, J. Morgiel, A. Lis, The effect of Mn partitioning in Fe–Mn–Si alloy investigated with STEM-EDS techniques , Mater. Chem. Phys., 81 (2003) 466-8.
[31]B. C. De Cooman, P. Gibbs, S. Lee, D. K. Matlock, Transmission electron microscopy analysis of yielding in ultrafine-grained medium Mn transformation-induced plasticity steel , Metall. Mater. Trans. A, 44A (2013) 2563-72.
[32]H. K. D. H. Bhadeshia, Worked examples in the Geometry of Crystals , 2nd ed., London, Inst. Metals, (2001)
[33]D. P. Koistinen, R. E. Marburger, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels , Acta. Metall., 7 (1959) 59-60.
[34]A. Das, P. C. Chakraborti, S. Tarafder, H. K. D. H. Bhadeshia, Analysis of deformation induced martensitic transformation in stainless steels , Mater. Sci. Tech., 27 (2011) 366-70.
[35]A. Perlade, O. Bouaziz, Q. Furnemont, A physically based model for TRIP-aided carbon steels behaviour , Mater. Sci. Eng. A, 356 (2003) 145-52.
[36]J. Wang, S. V. Zwaag, Stabilization mechanisms of retained austenite in trans-formation-induced plasticity steel, Metall. Mater. Trans. A, 32A (2001) 1527-39.
[37]N. H. van Dijk, A. M. Butt, L. Zhao, J. Sietsma, S. E. Offerman, J. P. Wright et al, Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling, Acta Mater., 53 (2005) 5439-47.
[38]A. Kammouni, W. Saikaly, M. Dumont, C. Marteau, X. Bano, A. Charaï , Effect of the bainitic transformation temperature on retained austenite fraction and stability in Ti microalloyed TRIP steels , Mater. Sci. Eng. A , 518 (2009) 89-96.
[39]A. Kammouni, W. Saikaly, M. Dumont, C. Marteau, X. Bano, A. Charaï , A methodology suitable for TEM local measurements of carbon concentration in retained austenite , Mater. Charact., 59 (2008) 1307-11.
[40]K. K. Park, S. T. Oh, D. I. Kim, J. H. Han, et al., In situ deformation behavior of retained austenite in TRIP steel, Mater. Sci. Forum, 408-12 (2002) 571-6.
[41]I. B. Timokhina, P. D. Hodgson, E. V. Pereloma, Effect of microstructure on the stability of retained austenite in transformation induced plasticity steels, Metall. Mater. Trans. A, 35 (2004) 2331-40.
[42]K. Sugimoto, M. Kobayashi, S. Hashimoto, Ductility and strain-induced trans-formation in a high-strength transformation-induced plasticity-aided dual-phase steel , ISIJ Int., 32 (1992) 1311-8.
[43]M. Cai, Z. Li, Q. Chao, P. D. Hodgson, A novel Mo and Nb microalloyed medium Mn TRIP steel with maximal ultimate strength and moderate ductility, Metall. Mater. Trans. A, 45 (2014) 5624-34.
[44]Z. H. Cai, H. Ding, X. Xue, J. Jiang, Q. B. Xin, R. D. K. Misra, Significance of control of austenite stability and three-stage work-hardening behavior of an ultrahigh strength–high ductility combination transformation-induced plasticity steel, Scripta Mater., 68 (2013) 865-8.
[45]H. Qu, G. M. Michal, A. H. Heuer, Third Generation 0.3C-4.0Mn advanced high strength steels through a dual stabilization heat treatment: austenite stabilization through paraequilibrium carbon partitioning, Metall. Mater. Trans. A, 45 (2014) 2741-9.
[46]G. Frommeyer, U. Brüx, P. Neumann, Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes, ISIJ Int., 43 (2003) No. 3, 438–46.
[47]謝克昌,未發表數據
[48]N.H. van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, S. van der Zwaag, Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling, Acta Mater, 53 (2005), 5439-47.
[49]K. Park, M. Nishiyama, N. Nakada, T. Tsuchiyama, S. Takaki, Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel, Mater. Sci. Eng. A , 604 (2014) 135-41.