跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/08 15:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡翔任
研究生(外文):Shiang-ren Tsai
論文名稱:露點對錳鋁鋼材選擇性氧化的研究
論文名稱(外文):Effect of dew point on selective oxidation of Mn-Al steels
指導教授:張六文
指導教授(外文):Liuwen Chang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:140
中文關鍵詞:選擇性氧化錳鋁鋼材冷軋露點兩相區退火
外文關鍵詞:dew pointcold-rolledintercritical annealingMn-Al steelselective oxidation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討在不同露點下的保護性氣氛中退火後,表面所形成的選擇性氧化物的種類、形貌和分布。其中,退火實驗於Iwatani熱浸鍍鋅模擬器進行,露點分為-70 oC、-30 oC和0 oC三種,退火溫度為500 oC至800 oC,退火時間為1~500秒。退火後的鋼材以SEM觀察氧化物形貌,再以XPS分析氧化物種類。
結果顯示鋼材在冷軋之前為沿著軋延方向交替排列的帶狀α-Fe和α+γ雙相組織,α+γ雙相組織中的α相和γ相均呈長條狀,在冷軋之後仍維持相同的顯微組織。
鋼材分別在露點-70 oC、-30 oC和0 oC氣氛下,以700 oC退火60秒之後,SEM觀察顯示,在露點-70 oC時,鋼材表面顆粒狀氧化物的數量較少,薄膜狀氧化物的區域較多。露點提高至-30 oC或0 oC時,顆粒狀氧化物的數量明顯比露點-70 oC多且密集,薄膜狀氧化物的區域減少很多。從XPS分析結果得知,露點-70 oC時表面主要的氧化物為Al2O3,MnAl2O4和MnO,在露點-30oC 和0 oC時,表面主要的氧化物皆為MnO。由元素縱深分析顯示,在低露點時,會在表面生成80~90 nm的MnAl2O4/Al2O3薄膜狀氧化物和20 nm的MnO氧化物,露點提高至-30 oC和0 oC時,表面主要為50~70 nm的MnO顆粒狀氧化物,且在距離表面100 nm左右的深度會有一層相當厚的MnAl2O4/Al2O3氧化物,進一步的SEM觀察顯示,這些氧化物分布於晶界,顯示在露點-30 oC和0 oC會有內氧化的發生。
鋼材在露點-70 oC下,於500 oC ~800 oC退火後,從XPS分析得知,在500 oC和600 oC時,表面主要的氧化物為MnO,上升至700 oC時,表面主要的氧化物轉為Al2O3,MnAl2O4和MnO,再上升至800oC時,表面主要的氧化物會轉變成Al2O3,而且氧化物厚度隨著退火溫度上升會先上升後下降,在700 oC退火時具有較厚的氧化物。另外在露點0 oC下,退火溫度600 oC至800 oC時,表面主要的氧化物皆是MnO,而且氧化物厚度隨著退火溫度上升而上升。
另外,利用不同碳含量的鋼材在露點-70 oC下退火,探討退火時間和鋼材碳含量的差異對選擇性氧化的影響,顯示隨退火時間增加,氧化物厚度也會隨之增加。但碳含量對氧化物種類與厚度影響不大。
The effects of dew point of the annealing atmosphere, annealing temperature and time on selective oxidation of Mn-Al steels were studied. The annealing was carried out in a Iwatani hot-dip simulator in a controlled atmosphere of 90% N2+10% H2. Three dew point value,-70 oC, -30 oC and 0 oC were used. The annealing temperature were varied from 500 oC to 800 oC and the annealing time were 1-500 seconds. The annealing samples were characterized by SEM and XPS.
The hot bands exhibitate a microstructure composite of a single α phase and α+γ dual phase regions arranged alternately along rolling. The α phase and γ phase were both fine strips in α+γ duplex regions.
Both granular oxidation particles and film-type oxides were observed on the surface of the Mn-Al steels annealed at 700 oC for 60 seconds at a dew point of -70 oC. When the dew point was increased to -30 oC or 0 oC, a large position of the surface was covered by the granular-type oxides as compared to that annealed at a dew point of -70 oC. XPS analysis indicated that oxide could be identified to be present on the surface annealed at the dew point of -70 oC Al2O3, MnAl2O4 and MnO. Depth profile analysis showed that the thickness of MnAl2O4/ Al2O3 is 80-90 nm and that of MnOis about 20 nm. However, oxide present on the surface of the steel annealed at the dew point of -30 oC or 0 oC was MnO. The MnO is about 50 to 70 nm in thickness, a layer of MnAl2O4/ Al2O3 was observrd underneath the MnO layer. SEM observation showed that Al2O3 was present at the grain boundaries, indicating it was formed internally.
The steel was also annealed at 500 oC to 800 oC for 60 seconds at the dew point of -70 oC. XPS results showed that MnO was the oxide first present on the surface when the steel was annealed at 500-600 oC. When the steel was annealed at 700 oC, Al2O3 and MnAl2O4 were observed in addition to MnO. Increasing the annealing temperature to 800 oC, the surface was covered by a layer of Al2O3 with a thickness which is thinner than the oxide formed at 700 oC. In addition, the surface was all covered by MnO when the steel was annealed at dew point of 0 oC, no matter the annealing temperatures.
Moreover, steels with different carbon contents were annealed at a dew point of -70 oC. No difference on the oxide type and thickness was observed.
論文審定書 i
誌謝 ii
摘要 iii
Abstract v
總目錄 vii
表目錄 ix
圖目錄 x
第一章、前言 1
第二章、文獻回顧 4
2.1熱浸鍍鋅製程的發展 4
2.1.1熱浸鍍鋅的防蝕原理 4
2.1.2連續式熱浸鍍鋅製程 4
2.1.3熱浸鍍鋅鋼材的發展與現況 5
2.2表面選擇性氧化 7
2.2.1氧化反應熱力學計算 7
2.2.2 Mn-Si TRIP鋼材的選擇性氧化物 8
2.2.3 Mn-Si-Al TRIP鋼材的選擇性氧化物 10
2.2.3 Mn-Al TRIP鋼材的選擇性氧化物 12
2.3鋅浴鋁含量對鍍層結構的影響 13
2.3.1無鋁純鋅浴對鍍層結構的影響 13
2.3.2鋅浴鋁含量小於0.14 wt%對鍍層結構的影響 14
2.3.2鋅浴鋁含量大於0.15 wt%對鍍層結構的影響 14
2.4鐵鋅與鐵鋁介面反應 14
2.4.1反應的潤濕作用 14
2.4.2鋁熱還原反應 15
2.5表面分析技術的原理 16
2.5.1 X光光電子能譜儀表面分析 16
2.5.2 掃描式電子顯微鏡表面金相分析 18
第三章、實驗方法 19
3.1試片準備 19
3.1.1熱軋試片顯微組織分析 19
3.1.2X-ray繞射分析 19
3.1.3 硬度分析 20
3.1.4 冷軋試片退火處理 20
3.2 X光光電子能譜儀(X-ray photoelectron spectroscopy,XPS)分析 20
3.3掃描式電子顯微鏡(Scanning electron microscopy,SEM)分析 21
3.4穿透式電子顯微鏡(Transmission electron microscopy,TEM)分析 21
第四章、結果與討論 22
4.1退火前材料顯微組織分析 22
4.1.1熱軋板顯微組織分析 22
4.1.2冷軋板顯微組織分析 23
4.2退火露點對鋼材選擇性氧化的影響 24
4.3退火溫度對鋼材選擇性氧化的影響 30
4.4退火時間對鋼材選擇性氧化的影響 32
4.5鋼材碳含量對鋼材選擇性氧化的影響 34
4.6綜合討論 35
第五章、結論 40
第六章、參考文獻 42
附錄、圖表 50


表目錄
表2-1 不同退火溫度、露點,退火時爐內分壓 50
表2-2 元素進行氧化反應之自由能方程式與適用溫度範圍一覽表 50
表2-3 Fe-M二元系統的亨利活性係數 51
表2-4 鐵鋁與鐵鋅界金屬化合物的性質一覽表 51
表3-1鋼材成分一覽表(單位:wt%) 51
表4-1 不同能峰位置下所對應的氧化物型態 52
表4-2 TRIP-A鋼材在不同退火條件下,鋼材表面所生成的氧化物種類。 52
表4-3 錳、鋁、氧在a鐵和g鐵的D0(cm2/s)和Q(kJ) 54
表4-4 在不同溫度下(退火60秒),錳、鋁和氧在a鐵和g鐵中的擴散距離r (cm) 54
表4-5 合金元素與氧形成氧化物的化學劑量比與形成氧化物後的莫耳體積 54
表4-6 不同露點下,700 oC和800 oC的鋼材溶氧量和合金元素的臨界濃度 54
表4-7 不同氣氛下,合金元素錳和鋁在a相和g相內的臨界濃度 55
表4-8不同氣氛下,合金元素錳和鋁在a相和g相內生成氧化物方式 55
(External以E代表,Internal以I代表) 55

圖目錄
圖2-1 連續式冷軋熱浸鍍鋅產線[1] 56
圖2-2 Ellingham diagram[24] 57
圖2-3 TEM露點-70 oC退火持溫60秒(a) BFI (b)選區繞射圖與DFI (c)高倍率的BFI (d)白色方格中的高解析影像[4] 58
圖2-4 TEM露點0 oC退火持溫60秒(a) BFI (b)選區繞射圖 (c)結晶態的MnSiO3與非晶態氧化物的DFI (d)高倍率的BFI (e)在晶粒內形成的氧化物的高解析影像[4] 59
圖2-5 露點+3 oC的TEM cross section顯微照片(a)全貌(b)區域A放大圖 (c)區域a1的高解析影像 (d)區域a2的高解析影像 (e)區域a3的高解析影像 (f)區域B高解析影像 (g)區域C高解析影像[19] 60
圖2-6 露點-30 oC退火溫度870 oC的TEM cross section顯微照片(a)全貌 (b)區域B高解析影像 (c)區域A的高解析影像 (d) O、Si、Mn和Al的mapping diagram [20] 61
圖2-7 TRIP鋼氧化物結構示意圖(Steel A&B為CMnAl,Steel C為CMnSi) [30] 62
圖2-8在鋅浴溫度460 oC下,鐵鋅鋁的三元相圖 (鋅含量高的區域) [32] 62
圖2-9純鋅浴中鐵鋅相隨著時間增加(t0< t1< t2< t3< t4)生長示意圖[36] 63
圖2-10 鋅浴鋁含量在0.10 wt%至0.13 wt%間鐵鋁層的形貌[37] 63
圖2-11鋅浴鋁含量在(a) 0.16 wt% (b) 0.18 wt% 鐵鋁層的形貌[37] 63
圖2-12 鋅浴鋁含量在0.20 wt%鐵鋁層生長示意圖[37] 64
圖2-13鐵鋅鋁的三元相圖:(a)完整[37] (b)鋅含量高的區域[31] 64
圖3-1 試片方位示意圖,RD為軋延方向,TD為截面方向(斜線區域),ND為表面的方向 64
圖3-2熱浸鍍鋅模擬器示意圖[38] 65
圖3-3鋼材熱處理的升降溫曲線 65
圖4-1 TRIP-A鋼材熱軋板在(a) 620 oC (b) 640 oC (c) 660 oC (d) 680 oC (e) 700 oC退火10小時候截面的SEM低倍率影像 66
圖4-1 (續) 67
圖4-1 (續) 68
圖4-2 TRIP-A鋼材熱軋板在(a) 620 oC (b) 640 oC (c) 660 oC (d) 680 oC (e) 700 oC退火10小時候截面的SEM高倍率影像 69
圖4-2 (續) 70
圖4-2 (續) 71
圖4-3 TRIP-A鋼材在不同退火溫度下的XRD分析 71
圖4-4 TRIP-B鋼材熱軋板在(a) 620 oC (b) 640 oC (c) 660 oC (d) 680 oC (e) 700 oC退火10小時候截面的SEM低倍率影像 72
圖4-4 (續) 73
圖4-4 (續) 74
圖4-5 TRIP-B鋼材熱軋板在(a) 620 oC (b) 640 oC (c) 660 oC (d) 680 oC (e) 700 oC退火10小時候截面的SEM高倍率影像 75
圖4-5 (續) 76
圖4-6 TRIP-B鋼材在不同退火溫度下的XRD分析 77
圖4-7 TRIP-A和TRIP-B鋼材在不同退火溫度下的Gamma相比例 78
圖4-8 TRIP-A和TRIP-B鋼材在不同退火溫度下的硬度分析 78
圖4-9 TRIP-A鋼材熱軋板660 oC退火10小時的表面(ND) (a)低倍率 (b)高倍率SEM影像 79
圖4-10 TRIP-A鋼材冷軋後表面(ND) (a)低倍率 (b)高倍率SEM影像 80
圖4-11 TRIP-A鋼材在露點-70 oC的退火氣氛下,700 oC退火60秒,表面氧化物(a)低倍率影像 (b)~(c)a相區域的高倍率影像 (d)a相區域的EDS成分分析 (e)~(f) (a+g)相區域的高倍率影像 (g) (a+g)相區域的EDS成分分析 81
圖4-11 (續) 82
圖4-11 (續) 83
圖4-12 TRIP-A鋼材在露點-30 oC的退火氣氛下,700 oC退火60秒,表面氧化物(a)低倍率影像 (b)~(c) a相區域的高倍率影像 (d) a相區域的成分分析 (e)~(f) (a+g)相區域的高倍率影像 (g) (a+g)相區域的成分分析 84
圖4-12 (續) 85
圖4-12 (續) 86
圖4-13 TRIP-A鋼材在露點0 oC的退火氣氛下,700 oC退火60秒,表面氧化物(a)低倍率影像 (b)~(c) a相區域的高倍率影像 (d) a相區域的成分分析 (e)~(f) (a+g)相區域的高倍率影像 (g) (a+g)相區域的成分分析 87
圖4-13 (續) 88
圖4-13 (續) 89
圖4-14 TRIP-A鋼材在不同露點下700 oC退火60秒的(a)Al 2p (b)Mn 2p3/2 (c)O 1s光電子能譜 90
圖4-14 (續) 91
圖4-15 TRIP-A鋼材在(a)露點0 oC (b)露點-30 oC (c)露點-70 oC下700 oC退火60秒的元素縱深分布圖 92
圖4-15 (續) 93
圖4-16 TRIP-A鋼材在露點0 oC下,700 oC退火60秒不同深度的(a)Al 2p (b)Mn 2p3/2 (c)O 1s (d)Fe 2p3/2光電子能譜 94
圖4-17 TRIP-A鋼材在露點-30 oC下,700 oC退火60秒不同深度的(a)Al 2p (b)Mn 2p3/2 (c)O 1s (d)Fe 2p3/2光電子能譜 96
圖4-17 (續) 97
圖4-18 TRIP-A鋼材在露點-70 oC下,700 oC退火60秒不同深度的(a)Al 2p (b)Mn 2p3/2 (c)O 1s (d)Fe 2p3/2光電子能譜 98
圖4-18 (續) 99
圖4-19 TRIP-A鋼材在露點-70 oC下不同退火溫度退火60秒的(a)Al 2p (b)Mn 2p3/2 (c)O 1s光電子能譜 100
圖4-19 (續) 101
圖4-20 TRIP-A鋼材在露點-70 oC下(a)500 oC (b)600 oC (c)700 oC (d)800 oC退火60秒的元素縱深分布圖 102
圖4-20 (續) 103
圖4-21 TRIP-A鋼材在露點0 oC下不同退火溫度退火60秒的(a)Al 2p (b)Mn 2p3/2 (c)O 1s光電子能譜 104
圖4-21 (續) 105
圖4-22 TRIP-A鋼材在露點0 oC下(a)600 oC (b)700 oC (c)800 oC,退火60秒的元素縱深分布圖 106
圖4-22 (續) 107
圖4-23TRIP-A鋼材在露點-70 oC下,700 oC退火 (a)~(b) 1秒 (c)~(d) 60秒 (e)~(f) 500秒,表面氧化物的SEM影像 108
圖4-23 (續) 109
圖4-23 (續) 110
圖4-24TRIP-A鋼材在露點-30 oC下,700 oC退火 (a) 1秒 (b) 60秒,表面氧化物的SEM影像 111
圖4-25TRIP-A鋼材在露點0 oC下,700 oC退火 (a) 1秒 (b) 60秒,表面氧化物的SEM影像 112
圖4-26 TRIP-A鋼材在露點-70 oC下,700 oC在不同退火時數的(a)Al 2p (b)Mn 2p3/2 (c)O 1s光電子能譜 113
圖4-26 (續) 114
圖4-27TRIP-C鋼材在低露點-70 oC下,700 oC退火1秒表面氧化物的 (a)低倍率影像 (b)~(c)高倍率影像 (d)EDS成分分析 115
圖4-27 (續) 116
圖4-28 TRIP-C鋼材在低露點-70 oC下,700 oC退火1秒表面氧化物的 (a)低倍率影像 (b)~(c)高倍率影像 (d)EDS成分分析 117
圖4-28 (續) 118
圖4-29 (a)~(b)TRIP-A鋼材在冷軋狀態下的SEM影像 (c)~(d) TRIP-A鋼材在露點-70 oC下700 oC退火1秒後對照區域的SEM影像 119
圖4-29 (續) 120
圖4-30 (a)~(b)TRIP-A鋼材在冷軋狀態下的SEM影像 (c)~(d) TRIP-A鋼材在露點-70 oC下700 oC退火500秒後對照區域的SEM影像 121
圖4-30 (續) 122
圖4-31 TRIP-C鋼材在露點-70 oC下,700 oC退火500秒,兩相區區域的(a)SEM影像 (b)Fe (c)Al (d)Mn (e)O 的EDS mapping 123
圖4-32 TRIP-A鋼材在露點0 oC下,700 oC退火60秒,相區域的(a)SEM影像 (b)Fe (c)Al (d)Mn (e)O 的EDS mapping 124
1.A.R. Marder, “The metallurgy of zinc-coated steel”, Prog. Mater. Sci., 45(2000) 191-271.
2.R. Kuziak, R. Kawalla, S. Waengler,“Advanced high strength steels for automotive industry: a review”, Arch. Civ. Mech. Eng, 8 (2008) 103-117.
3.J.Mahieu, B.C. DeCooman, and S. Claessens. “Galvanizability of high-strength steels for automotive applications.” Metall. Mater. Trans. A , 32 (2001) 2905-2908.
4.K.K. Wang, C.W. Hsu, L. Chang, D. Gan, T.R. Chen, K.C Yang, “Study ofselective oxidation behavior of a 1.2Si-1.5Mn TRIP Steel during intercritical annealing”, J. Electrochem. Soc., 159 (2012) 561-570.
5.K.K. Wang, C.W. Hsu, L. Chang, D. Gan, & K.C. Yang, “Role of Al in Zn bath on the formation of the inhibition layer during hot-dip galvanizing for a 1.2 Si–1.5 Mn transformation-induced plasticity steel.” Appl. Surf. Sci. 285 (2013) 458-468.
6.J.Mahieu, B.C. DeCooman, and J. Maki. “Phase transformation and mechanical properties of Si-free CMnAl transformation-induced plasticity-aided steel.” Metall. Mater. Trans. A,33 (2002) 2573-2580.
7.劉宜佩。露點對矽鋁相變誘發塑性鋼材熱浸鍍鋅性影響的研究,國立中山大學材料與光電科學學系碩士學位論文,(2015)。
8.E.M. Bellhouse , A.I.M. Mertens , J.R. McDermid, “Development of the surface structure of TRIP steels prior to hot-dip galvanizing”, Mater. Sci. Eng. A, 463 (2007) 147–156.
9.E.M. Bellhouse, and J.R. McDermid. “Selective Oxidation and Reactive Wetting of 1.0 Pct Si-0.5 Pct Al and 1.5 Pct Si TRIP-Assisted Steels.” Metall. Mater. Trans. A , 41 (2010) 1539-1553.
10.許瓊文。未發表之實驗數據。中山大學材料與光電科學學系。
11.D.K. Matlock, and J.G. Speer. "Design considerations for the next generation of advanced high strength sheet steels." Proceedings of 3rd International Conference on Structural Steels, Seoul, Korea, 2006, pp.774-781.
12.D.K. Matlock, and J.G. Speer. "Third generation of AHSS: microstructure design concepts.",in: A. Haldar, S. Suwas, D. Bhattacharjee, “Microstructure and Texture in Steels”, Springer, London, 2008, pp.185-205.
13.M.G. Fontana and N.D. Greene, “Corrosion Engineering”, McGraw-Hill, New York, 1967
14.J.S. Yu, J.X. Zhang, J.S. Wu, J.L. Liu, J.G. Chen, “The overview of the coating performance of galvanized sheet applied in automobile”,Phys. Test. Chem. Anal. A, 41 (2005) 325-328.
15.J. Bian, Y. Zhu, X.H. Liu, G.D.Wang, “Development of hot dip galvanized steel strip and its application in automobile”, J. Iron Steel Res. Int., 13 (2006)47-50.
16.R. Khondlker, A. Mertens, J.R. McDermid, “Effect of annealing atmosphere on the galvanizing behavior of a dual-phase steel”, Mater. Sci. Eng. A, 463 (2007) 157-165.
17.V.F. Zackay, E.R. Parker, D. Fahr, & R. Busch, “The enhancement of ductility in high-strength steels.” ASM Trans Quart., 60 (1967) 252-259.
18.L. Samek, E. DeMoor, J. Penning, & B.C. DeCooman, “Influence of alloying elements on the kinetics of strain-induced martensitic nucleation in low-alloy, multiphase high-strength steels.” Metall. Mater. Trans. A, 37 (2006) 109-124.
19.Y.F. Gong, H.S. Kim, and B.C. DeCooman. “Internal oxidation during intercritical annealing of CMnSi TRIP steel.” ISIJ Int., 49 (2009) 557-563.
20.Y.F. Gong, H.S. Kim, and B.C. DeCooman. “Formation of surface and subsurface oxides during ferritic, intercritical and austenitic annealing of CMnSi TRIP steel.” ISIJ Int., 48 (2008) 1745-1751.
21.P. Drillet, Z. Zermout, D. Bouleau, J. Mataigne, S. Claessens, “Selective oxidation of high Si, Mn and Al steel grade during recrystallization annealing, and steel/Zn reactivity”, Proceeding of the 6th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Chicago, IL, USA, April 4-7, 2004, pp.1123-1134.
22.T. Bhattacharyya, S.B. Singh, S. Das, A. Haldar, & D. Bhattacharjee, “Development and characterisation of C–Mn–Al–Si–Nb TRIP aided steel.” Mater. Sci. Eng., A, 528 (2011) 2394-2400.
23.D. Huin, P. Flauder, J.B. Leblond, “Numerical simulation of internal oxidation of steels during annealing treatments”, Oxid. Met., 64 (2005) 131-167.
24.R. DeHoff,“Thermodynamics in materials science”, 2nd ed.,CRC Press, 2006.
25.David R. Gaskell, “Introduction to the Thermodynanics of Materials”, CRC Press, 2008.
26.P. J. Jacques, E. Girault, A. Mertens, B. Verlinden, J. VanHumbeeck, & F. Delannay, “The developments of cold-rolled TRIP-assisted multiphase steels. Al-alloyed TRIP-assisted multiphase steels.” ISIJ Int., 41 (2001) 1068-1074.
27.J. Mahieu, S. Claessens, B.C. DeCooman and F. Goodwin,“Surface and Sub-surface Characterization of Si-Al and P-alloyed TRIP-aided steel”, Proceeding of the 5th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Brussels, Belgium, June 26-28, 2001, pp. 644-651.
28.E.M. Bellhouse, and J.R. McDermid,“Selective Oxidation and Reactive Wetting during Galvanizing of a CMnAl TRIP-Assisted Steel”, Metall. Mater. Trans. A, 42 (2011) 2753-2768.
29.Thorning, Casper, and Seetharaman Sridhar. “The role of grain boundary diffusion in initial selective oxidation kinetics of a manganese-aluminum TRIP steel.” J. Phase Equilib. Diff., 26 (2005) 539-546.
30.J. Maki, J. Mahieu, B.C. DeCooman, & S. Claessens “Galvanisability of silicon free CMnAl TRIP steels.” Mater. Sci. Technol.,19 (2003) 125-131.
31.L. Bordignon, G. Angeli, H. Bolt, R. Hekkens, W. Mascheck,“Enhanced hot dip galvanising by controlled oxidation in the annealing furnace”, 44 th MWSP Conf. Proc., (2002) 833-834.
32.N.Y. Tang, G.R. Adams, and P.S. Kolisnyk. “On determining effective aluminum in continuous galvanizing baths.” Galvatech''95. The Use and Manufacture of Zinc and Zinc Alloy Coated Sheet Steel Products Into the 21 st Century, 1995,pp.777-782.
33.N.Y. Tang,“Determination of liquid-phase boundaries in Zn-Fe-Mx systems”, J. Phase Equilib., 21 (2000) 70-77.
34.J.I. Inagaki, M. Sakuria, T. Watanabe,“Alloying reactions in hot dipping
galvanizing and galvannealing process”, ISIJ Int., 35 (1995) 1388-1393.
35.M. Guttmann, “Diffusive phase transformation in hot dip galvanizing”, Mater. Sci. Forum, 155 (1994) 527-548.
36.C.E. Jordan., and A.R. Marder. “Fe-Zn phase formation in interstitial-free steels hot-dip galvanized at 450° C: Part I 0.00 wt% Al-Zn baths.” J. Mater. Sci., 32 (1997) 5593-5602.
37.Baril, Eric, and Gilles L’espérance. “Studies of the morphology of the Al-rich interfacial layer formed during the hot dip galvanizing of steel sheet.” Metall. Mater. Trans. A, 30 (1999) 681-695.
38.L. Chen, R. Fourmentin, and J.R. McDermid. “Morphology and kinetics of interfacial layer formation during continuous hot-dip galvanizing and galvannealing.” Metall. Mater. Trans. A, 39 (2008) 2128-2142.
39.Y. Morimoto, E. McDevitt, and M. Meshii. “Characterization of the Fe-Al Inhibition Layer Formed in the Initial Stages of Hot-dip Galvannealing.” ISIJ Int., 37 (1997) 906-913.
40.E.M. Bellhouse, and J.R. McDermid,“Analysis of the Fe-Zn interface of
galvanized high Al-low Si TRIP steels”, Mater. Sci. Eng. A, 491 (2008) 39-46.
41.E. McDevitt, Y. Morimoto, and M. Meshii, “Characterization of the Fe-Al
interfacial layer in a commercial hot-dip galvanized coating”, ISIJ Int., 37 (1997) 776-782.
42.R. Kavitha, A. Mertens, and J.R. McDermid, “On the in-situ aluminothermic reduction of manganese oxides in continuous galvanizing baths”, Proceedings of the 8th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Genova, Italy, June 21-24, (2011)1243.
43.P. Drillet, Z. Zermount, D. Bouleau, J. Mataigne, S. Claessens, Proceeding of the 6th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Chicago, IL, USA, April 4-7, 2004, p. 1123.
44.Y.F. Gong, T.J. Song, H.S. Kim, J.H. Kwak, and B.C. DeCooman, Proceedings of the Asia Pacific Galvanizing Conference, Jeju, Korea, The Corrosion Science Society of Korea, 2009 paper no. B-15.
45.L. Cho, S.J. Lee, M.S. Kim, Y.H. Kim, B.C. De Cooman,“Influence of gas atmosphere dew point on the selective oxidation and the reactive wetting during hot dip galvanizing of CMnSi TRIP steel”, Metall. Mater. Trans. A, 44(2013) 362.
46.C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg“Handbook of X‐ray Photoelectron Spectroscopy”,Eden Prairie, Minnesota,1979.
47.J.C. Vickerman, I.S. Gilmore “Surface analysis: the principal techniques”, 2nd ed.Wiley, 2009.
48.J.I. Goldstein, D.E. Newbury, P. Echlin,“Scanning Electron Microscopy and X-Ray Microanalysis”, 2nd ed. Plenum Press, New York, 1992.
49.I.H. Jung, S.A. Decterov, & A.D. Pelton, “A thermodynamic model for deoxidation equilibria in steel.” Metall. Mater. Trans. B, 35 (2004) 493-507
50.Huachu Liu, Yanlin He, and Lin Li "Application of thermodynamics and Wagner model on two problems in continuous hot-dip galvanizing." Applied Surface Science 256 (2009) 1399-1403..
51.Casper Thorning, and Seetharaman Sridhar. "The role of grain boundary diffusion in initial selective oxidation kinetics of a manganese-aluminum TRIP steel." Journal of phase equilibria and diffusion (2005) 539-546
52.D.J. Young, “High temperature oxidation and corrosion of metals” Vol. 1. Elsevier, 2008.
53.R.A. Rapp "Kinetics, microstructures and mechanism of internal oxidation-its effect and prevention in high temperature alloy oxidation."Corrosion 21 (1965) 382-401.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top