跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/13 10:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄧潔如
研究生(外文):Jie-Ru Deng
論文名稱:高熱電優值之In摻雜GeTe:其相圖及熱電性質探討
論文名稱(外文):Engineering high-zT In-doped GeTe: the phase equilibria and thermoelectric properties
指導教授:吳欣潔吳欣潔引用關係
指導教授(外文):Hsin-Jay Wu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:170
中文關鍵詞:液相線投影圖等溫橫截面圖熱電材料GeTeGe-Te-InBridgman長晶法雙晶結構
外文關鍵詞:twinliquidus projectionisothermal sectionGeTeGe-Te-Inthermoelectric materialsBridgman growth
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
能源危機是全世界共同問題,研究能源替代及增加材料使用效率,皆是現在能源發展之方向。而熱電材料是個固態轉換器,能將電能和熱能互相轉換,且具有體積小、壽命長、無運動組件等優點,因此在能源研究上受到很大的關注及討論。GeTe為常見且被認為具有潛力的中溫型熱電材料,在720K時zT值高達0.8,此時其為立方結構,不具方向性問題。而GeTe的電阻率非常低,但具有較高的熱傳導率,所以可藉由摻雜(doping)來提升其熱電性質。相圖提供基礎且重要的資訊,探討材料相轉變及內部結構變化之重要資訊。對熱電材料而言,結構與性質十分相關,因此必須以相圖為基礎來研究熱電材料。Ge-Te-In三元系統相圖為Ge-Te-In熱電系統之重要基礎。因此本研究主要以實驗與分析來建立其三元系統,並依據相圖找出GeTe穩定存在之相區,進行熱電性質的量測。本研究的工作將包括: (1)以實驗測定Ge-Te-In三元系統之液相線投影圖、(2)以實驗測定Ge-Te-In三元系統的350OC等溫橫截面圖 (3)量測In摻雜GeTe之熱電性質。在本研究所配置之In摻雜GeTe合金中,合金#8 (In2Te3)0.025(GeTe)2.925在623K時具有最高的zT值高達1.12,與未參雜之GeTe相比上升了150%。進一步利用穿透式顯微鏡(TEM)觀察到合金內具有奈米級雙晶(twin)結構,且此twin的結構會同時降低熱傳導係數及增加電導率,故使zT值提升。
Thermoelectric (TE) materials, which can convert waste heat into precious electricity, has been viewed as an effective solution for the worldwide energy issue. The simple cubic GeTe is known as a promising mid-temperature TE material, mainly owing to its excellent power factor. Minor doping might be effective in reducing the thermal conductivity of GeTe and thus enhancing the figure-of-merit (zT). Phase diagram, which provides basic yet essential information, probes the phase stability and thermodynamic behavior of complicated materials systems. With an aid of phase diagram and microstructural evolution, the TE properties can be optimized systematically. This study aims to determine the ternary phase diagrams of Ge-Te-In system, and the efforts include: (1) determining the liquidus projection by water-quenched alloys, (2) constructing the 350˚C isothermal section by thermally-equilibrated alloys, and (3) measuring the thermoelectric property of In-doped GeTe alloys. In this work, alloy (In2Te3)0.025(GeTe)2.925 reaches the highest peak value of zT~1.12 at 623K, showing 150% enhancement compared with that of the undoped GeTe (zT~0.75). On the basis of TEM analysis, the nano-sized twinning structure was discovered throughout the (In2Te3)0.025(GeTe)2.925, which leading to the reduced thermal conductivity and enhanced electrical conductivity.
摘要 ................................................................................................................. i
Abstract.......................................................................................................... ii
目錄 ............................................................................................................... iii
圖目錄 ............................................................................................................ v
表目錄 .......................................................................................................... xii
一、前言 ........................................................................................................ 1
二、文獻回顧 ................................................................................................. 8
2.1相圖 ....................................................................................................... 8
2.1-1 Ge-Te二元系統相平衡圖 .............................................................. 8
2.1-2 In-Te二元系統相平衡圖 ............................................................... 8
2.1-3 Ge-In二元系統相平衡圖 .............................................................. 9
2.1-4 Ge-In-Te三元系統計算液相投影圖 ........................................... 10
2.2 熱電材料 ............................................................................................ 10
2.2-1 GeTe熱電材料 ............................................................................ 11
三、研究方法 ............................................................................................... 21
3.1 Ge-Te-In三元系統相平衡 ................................................................. 21
3.1-1 合金製備 ..................................................................................... 21
3.1-2 相平衡實驗及分析 ...................................................................... 21
3.2 Ge-Te-In三元系統液相線投影圖 ...................................................... 22
3.2-1液相線投影圖合金製備 ............................................................... 22
3.2-2液相線投影圖合金分析 ............................................................... 23
3.3 熱電性質 ............................................................................................ 23
四.結果與討論 .............................................................................................. 26
4.1 三元系統液相線投影圖 ..................................................................... 26
4.1-1 首要析出相:GeInTe3 ................................................................ 33
4.1-2 首要析出相:Ge2In3Te15 ............................................................ 40
4.1-3 首要析出相:Ge ......................................................................... 42
4.1-4 首要析出相:GeTe ..................................................................... 51
4.1-5 首要析出相:Te ......................................................................... 53
4.1-6 首要析出相:In2Te5 ................................................................... 58
4.1-7 首要析出相:In2Te3+x................................................................. 62
4.1-8 首要析出相:InTe ...................................................................... 65
4.1-9 首要析出相:In4Te3 ................................................................... 69
4.2 350oC Ge-Te-In三元系統等溫橫截面 ............................................... 73
4.2-1 GeInTe3 單相區 .......................................................................... 81
4.2-2 L+ In4Te3兩相區 ......................................................................... 83
4.2-3 Ge+ In4Te3兩相區 ....................................................................... 86
4.2-4 Ge+ InTe兩相區 ......................................................................... 89
4.2-5 GeInTe3+ In2Te3+X兩相區 ........................................................... 92
4.2-6 GeInTe3+ In2Te5兩相區 .............................................................. 94
4.2-7 GeInTe3+ Te兩相區 .................................................................... 97
4.2-8 GeInTe3+In3Te4兩相區 ............................................................... 98
4.2-9 Ge+GeTe兩相區 ......................................................................... 99
4.2-10 GeTe+GeInTe3兩相區 ............................................................. 100
4.2-11 GeTe+ GeTeIn3+ In3Te4三相區 .............................................. 102
4.2-12 Ge+ GeTe+ In3Te4三相區 ....................................................... 108
4.2-13 GeTe+Te+ GeInTe3三相區 ..................................................... 111
4.2-14 In2Te5+Te+ GeInTe3三相區 .................................................... 115
4.2-15 In2Te5+In2Te3+x+ GeInTe3三相區 ........................................... 117
4.3 熱電性質 .......................................................................................... 120
4.3-1 GeTe之熱電性質....................................................................... 123
4.3-2 (GeTe)1-xInx之熱電性質 ............................................................ 123
4.3-3 GeTe摻雜In之熱電性質 ......................................................... 128
4.3-4 GeTe沿著In2Te3之熱電性質 ................................................... 133
4.3-5 合金#8 (In2Te3)0.025(GeTe)2.925 之TEM金相分析 ................... 137
4.3-6熱電性質之總結 ......................................................................... 140
五、結論 .................................................................................................... 147
5.1相圖 ................................................................................................... 147
5.2 熱電性質 .......................................................................................... 148
六、參考文獻 ............................................................................................. 152
1. T.M. Tritt and M.A. Saber, Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View, Materials Research Society Bulletin, vol. 31, pp. 188-194, (2006).
2. E. Bell, Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems, Science, vol. 321 , pp. 1457-1461, (2008).
3. C. Xiao, J. Xu, B. Cao, K. Li, M. Kong and Y. Xie, Solid-Solutioned Homojunction Nanoplates with Disordered Lattice: A Promising Approach toward “Phonon Glass Electron Crystal” Thermoelectric Materials, American Chemical Society, vol. 134, pp. 7971, (2012).
4. Global Thermoelectric, Thermoelectric Generators for Cathodic Protection, www.farwestcorrosion.com/fwst/ dcpower/global01.htm.
5. C.H.L. Goodman and R.W. Douglas, Ternary Copper-Based Diamond-Like Semiconductors for Thermoelectric Applications, Physica (Amsterdam), vol. 20, pp. 1107, (1954).
6. 朱旭山,電材料與元件之原理與應用。<電子與材料雜誌>,22期,pp.78-89(2004)。
7. http://disalvo.chem.cornell.edu/thermotheory2.html
8. J. DiSalvo, Thermoelectric Cooling and Power Generation, Science, vol. 285, pp. 703-706, (1999).
9. J. Minnich, S. Dresselhaus, F. Ren and G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects, The Royal Society of Chemistry , vol. 2, pp. 466-479, (2009).
10. M. Zhao,J. Zhang,N. Gao,P. Song,M. Bosman,B. Peng,B. and Q. Sun, Actively Tunable Visible Surface Plasmons in Bi2Te3 and their Energy-Harvesting Applications, Advanced Materials, vol. 28, pp. 3138-3144,154, (2016).
11. X. B. Zhao, X. H. Ji, Y. H. Zhang, T. J. Zhu, J. P. Tu and X. B. Zhang, Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites, Applied Physics, vol. 86, pp. 062111, (2005).
12. W. Xie, S. Wang, S. Zhu, J. He, T.M. Tritt and Q. Zhang, High performance Bi2Te3 nanocomposites prepared by single-element-melt-spinning spark-plasma sintering, Materials Science, vol. 10, pp. 1007, (2012).
13. http://thermoelectrics.matsci.northwestern.edu/thermoelectrics/index.html
14. H. Takiguchi, A. Matoba, K. Sasaki, Y. Okamoto, H. Miyazaki1 and J. Morimoto, Structural Properties of Heavily B-Doped SiGe Thin Films for High Thermoelectric Power, Materials Transactions, vol. 51, pp. 878 -881, (2010).
15. J.F. Deng, J.Q. Li , R.F. Ye, X.Y. Liu, F.S. Liu and W.Q. Ao, Enhanced thermoelectric properties of (Pb1-xYbxTe)0.15(GeTe)0.85 composites due to phase separation and Yb doping, Alloys and Compounds, vol. 585, pp. 173–177, (2014).
16. H. S. Lee, B. S. Kim, C. W. Cho, M. W. Oh, B. K. Min, S. D. Park and H. W. Lee, Herringbone structure in GeTe-based thermoelectric materials, Acta Materialia, vol. 91, pp. 83–90, (2015).
17. S. Perumal, S. Roychowdhury and K. Biswas , High performance thermoelectric materials and devices based on GeTe, Royal Society of Chemistry, vol. 4, pp. 7520-7536, (2016).
18. G. Jeffrey Snyder, Small Thermoelectric Generators, Science, vol. 321, pp. 1457-61, (2008).
19. M. Levin, F. Besser and R. Hanus, Electronic and thermal transport in GeTe: A versatile base for thermoelectric materials, Applied Physics, vol. 114, pp.155083713, (2013)
20. Y. Chen, T.J. Zhu, S.H. Yang, S.N. Zhang, W. Miao and X.B. Zhao, High-Performance (AgxSbTex/2+1.5)(15)(GeTe)(85)Thermoelectric Materials Prepared by Melt Spinning, Nanotechnology, vol. 39, pp. 1719-1723, (2008).
21. J. Akola and O. Jones, Binary Alloys of Ge and Te: Order, Voids, and the Eutectic Composition, Physical Review Letters, vol. 100, pp. 20-23, (2008).
22. J. Polking, G. Han, A. Yourdkhani, V. Petkov, F. Kiselowski, V. Volkov, Y. Zhu, G. Caruntu, P. Alivisatos and R. Ramesh, Reduction of thermal conductivity through nanostructuring enhances the thermoelectric figure of merit in Ge1−xBixTe, Nature Materials, vol. 3, pp. 125-132, (2016).
23. S. Perumal,S. Roychowdhury,D. S. Negi,R. Datta and K. Biswas, High Thermoelectric Performance and Enhanced Mechanical Stability of p‐type Ge1−xSbxTe, Chemistry of Materials, vol. 27, pp. 7171-7178, (2015).
24. J.Q. Li, L.F. Li, S.H. Song, F.S. Liu and W.Q. Ao, High thermoelectric performance of GeTe–Ag8GeTe6 eutectic composites, Alloys and Compounds, vol. 565, pp. 144-147, (2013).
25. Q. Zhang, B.L. Liao, Y.C. Lan, K.Lukas, W.S. Liu, K.Esfarjani, C. Opeil, D.Broido, G. Chen and Z.F. Ren , High thermoelectric performance by resonant dopant indium in nanostructured SnTe , Proceedings of the National Academy of Sciences of the United States of America, vol. 110, pp. 13261–13266, (2013).
26. M. Guch, C. R.Sankar, J. Salvador, G. Meisner and H. Kleinke, Thermoelectric properties of In-doped PbTe, Science of Advanced Materials, vol. 3, pp. 615–620, (2011).
27. H. Sun, X. Lu, H. Chi, D. T. Morelli and C. Uher, Highly efficient (In2Te3)x(GeTe)3-3x thermoelectric materials: a substitute for TAGS, Physical Chemistry, vol. 16, pp. 15570-15575,(2014).
28. H. Okamoto, Ge-Te (Germanium-Tellurium), Phase Equilibria, vol. 21, pp. 496,(2000).
29. H. Okamoto, In-Te (Indium-Tellurium) Binary Alloy Phase Diagrams, Phase Equilibria, vol. 3, pp. 2301-2304, (1990).
30. In2Te3-JCPDS[16-0445].
31. W. Olesinski, N. Kanani and J. Abbaschian, Ge-In (Germanium-Indium) Binary Alloy Phase Diagrams, Phase Equilibria, vol. 2, pp. 1955-1956, (1990).
32. Zargarova and M. Akperov, Phase equilibria in the ternary system In-Ge-Te, Inorganic Materials, vol. 9, pp. 1012-1015 , (1973).
33. S. H. Yang, T J. Zhu, T. Sun, J. He, S. N. Zhang and X. B. Zhao , Nanostructures in high-performance (GeTe)x(AgSbTe)100-x thermoelectric materials, Nanotechnology , vol. 19, pp. 245707-245712 , (2008)
34. J.Q. Li, Z.W. Lu, H.J. Wu, H.T. Li, F.S. Liu, W.Q. Ao, J. Luo and J.Q. He ,High thermoelectric performance of Ge1-xPbxSe0.5Te0.5 due to (Pb, Se) co-doping, Acta Materialia, vol.74, pp.215-223, (2014).
35. D.L. Medlin, G.J. Snyder, Interfaces in bulk thermoelectric materials, Current Opinion in Colloid and Interface Science, vol. 14, pp. 226–235, (2009).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊