|
1. T.M. Tritt and M.A. Saber, Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View, Materials Research Society Bulletin, vol. 31, pp. 188-194, (2006). 2. E. Bell, Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems, Science, vol. 321 , pp. 1457-1461, (2008). 3. C. Xiao, J. Xu, B. Cao, K. Li, M. Kong and Y. Xie, Solid-Solutioned Homojunction Nanoplates with Disordered Lattice: A Promising Approach toward “Phonon Glass Electron Crystal” Thermoelectric Materials, American Chemical Society, vol. 134, pp. 7971, (2012). 4. Global Thermoelectric, Thermoelectric Generators for Cathodic Protection, www.farwestcorrosion.com/fwst/ dcpower/global01.htm. 5. C.H.L. Goodman and R.W. Douglas, Ternary Copper-Based Diamond-Like Semiconductors for Thermoelectric Applications, Physica (Amsterdam), vol. 20, pp. 1107, (1954). 6. 朱旭山,電材料與元件之原理與應用。<電子與材料雜誌>,22期,pp.78-89(2004)。 7. http://disalvo.chem.cornell.edu/thermotheory2.html 8. J. DiSalvo, Thermoelectric Cooling and Power Generation, Science, vol. 285, pp. 703-706, (1999). 9. J. Minnich, S. Dresselhaus, F. Ren and G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects, The Royal Society of Chemistry , vol. 2, pp. 466-479, (2009). 10. M. Zhao,J. Zhang,N. Gao,P. Song,M. Bosman,B. Peng,B. and Q. Sun, Actively Tunable Visible Surface Plasmons in Bi2Te3 and their Energy-Harvesting Applications, Advanced Materials, vol. 28, pp. 3138-3144,154, (2016). 11. X. B. Zhao, X. H. Ji, Y. H. Zhang, T. J. Zhu, J. P. Tu and X. B. Zhang, Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites, Applied Physics, vol. 86, pp. 062111, (2005). 12. W. Xie, S. Wang, S. Zhu, J. He, T.M. Tritt and Q. Zhang, High performance Bi2Te3 nanocomposites prepared by single-element-melt-spinning spark-plasma sintering, Materials Science, vol. 10, pp. 1007, (2012). 13. http://thermoelectrics.matsci.northwestern.edu/thermoelectrics/index.html 14. H. Takiguchi, A. Matoba, K. Sasaki, Y. Okamoto, H. Miyazaki1 and J. Morimoto, Structural Properties of Heavily B-Doped SiGe Thin Films for High Thermoelectric Power, Materials Transactions, vol. 51, pp. 878 -881, (2010). 15. J.F. Deng, J.Q. Li , R.F. Ye, X.Y. Liu, F.S. Liu and W.Q. Ao, Enhanced thermoelectric properties of (Pb1-xYbxTe)0.15(GeTe)0.85 composites due to phase separation and Yb doping, Alloys and Compounds, vol. 585, pp. 173–177, (2014). 16. H. S. Lee, B. S. Kim, C. W. Cho, M. W. Oh, B. K. Min, S. D. Park and H. W. Lee, Herringbone structure in GeTe-based thermoelectric materials, Acta Materialia, vol. 91, pp. 83–90, (2015). 17. S. Perumal, S. Roychowdhury and K. Biswas , High performance thermoelectric materials and devices based on GeTe, Royal Society of Chemistry, vol. 4, pp. 7520-7536, (2016). 18. G. Jeffrey Snyder, Small Thermoelectric Generators, Science, vol. 321, pp. 1457-61, (2008). 19. M. Levin, F. Besser and R. Hanus, Electronic and thermal transport in GeTe: A versatile base for thermoelectric materials, Applied Physics, vol. 114, pp.155083713, (2013) 20. Y. Chen, T.J. Zhu, S.H. Yang, S.N. Zhang, W. Miao and X.B. Zhao, High-Performance (AgxSbTex/2+1.5)(15)(GeTe)(85)Thermoelectric Materials Prepared by Melt Spinning, Nanotechnology, vol. 39, pp. 1719-1723, (2008). 21. J. Akola and O. Jones, Binary Alloys of Ge and Te: Order, Voids, and the Eutectic Composition, Physical Review Letters, vol. 100, pp. 20-23, (2008). 22. J. Polking, G. Han, A. Yourdkhani, V. Petkov, F. Kiselowski, V. Volkov, Y. Zhu, G. Caruntu, P. Alivisatos and R. Ramesh, Reduction of thermal conductivity through nanostructuring enhances the thermoelectric figure of merit in Ge1−xBixTe, Nature Materials, vol. 3, pp. 125-132, (2016). 23. S. Perumal,S. Roychowdhury,D. S. Negi,R. Datta and K. Biswas, High Thermoelectric Performance and Enhanced Mechanical Stability of p‐type Ge1−xSbxTe, Chemistry of Materials, vol. 27, pp. 7171-7178, (2015). 24. J.Q. Li, L.F. Li, S.H. Song, F.S. Liu and W.Q. Ao, High thermoelectric performance of GeTe–Ag8GeTe6 eutectic composites, Alloys and Compounds, vol. 565, pp. 144-147, (2013). 25. Q. Zhang, B.L. Liao, Y.C. Lan, K.Lukas, W.S. Liu, K.Esfarjani, C. Opeil, D.Broido, G. Chen and Z.F. Ren , High thermoelectric performance by resonant dopant indium in nanostructured SnTe , Proceedings of the National Academy of Sciences of the United States of America, vol. 110, pp. 13261–13266, (2013). 26. M. Guch, C. R.Sankar, J. Salvador, G. Meisner and H. Kleinke, Thermoelectric properties of In-doped PbTe, Science of Advanced Materials, vol. 3, pp. 615–620, (2011). 27. H. Sun, X. Lu, H. Chi, D. T. Morelli and C. Uher, Highly efficient (In2Te3)x(GeTe)3-3x thermoelectric materials: a substitute for TAGS, Physical Chemistry, vol. 16, pp. 15570-15575,(2014). 28. H. Okamoto, Ge-Te (Germanium-Tellurium), Phase Equilibria, vol. 21, pp. 496,(2000). 29. H. Okamoto, In-Te (Indium-Tellurium) Binary Alloy Phase Diagrams, Phase Equilibria, vol. 3, pp. 2301-2304, (1990). 30. In2Te3-JCPDS[16-0445]. 31. W. Olesinski, N. Kanani and J. Abbaschian, Ge-In (Germanium-Indium) Binary Alloy Phase Diagrams, Phase Equilibria, vol. 2, pp. 1955-1956, (1990). 32. Zargarova and M. Akperov, Phase equilibria in the ternary system In-Ge-Te, Inorganic Materials, vol. 9, pp. 1012-1015 , (1973). 33. S. H. Yang, T J. Zhu, T. Sun, J. He, S. N. Zhang and X. B. Zhao , Nanostructures in high-performance (GeTe)x(AgSbTe)100-x thermoelectric materials, Nanotechnology , vol. 19, pp. 245707-245712 , (2008) 34. J.Q. Li, Z.W. Lu, H.J. Wu, H.T. Li, F.S. Liu, W.Q. Ao, J. Luo and J.Q. He ,High thermoelectric performance of Ge1-xPbxSe0.5Te0.5 due to (Pb, Se) co-doping, Acta Materialia, vol.74, pp.215-223, (2014). 35. D.L. Medlin, G.J. Snyder, Interfaces in bulk thermoelectric materials, Current Opinion in Colloid and Interface Science, vol. 14, pp. 226–235, (2009).
|