(3.238.186.43) 您好!臺灣時間:2021/02/25 02:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭育如
研究生(外文):Yu-ju Cheng
論文名稱:特殊發光基團於高分子奈米材料及聚胜肽之研究
論文名稱(外文):Study of Unusual Emission Units in Polymer Nanomaterials and Polypeptide
指導教授:郭紹偉郭紹偉引用關係
指導教授(外文):Shiao-Wei Kuo
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:92
中文關鍵詞:高分子混摻氫鍵作用力聚胜肽多面體聚矽氧烷寡聚物聚集誘導發光
外文關鍵詞:PolypeptidesAggregation Induced EmissionPolyhedral Oligomeric SilsesquioxanesPolymer BlendsHydrogen-Bond Interaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗將含有多面體矽氧烷寡聚體(POSS)之馬來酸酐(maleimide isobutyl polyhedral oligomeric silsesquioxane, MIPOSS)改質接上溴及丁胺(Br, NHBu)後,製備出具有特殊螢光性質之單體。接著,透過簡單的自由基聚合方式,以偶氮二異丁腈(Azobisisobutyronitrile, AIBN)作為起始劑,合成出一系列以苯乙烯為基礎的交替型共聚物。透過熱分析研究顯示,在熱穩定度皆獲得有效的提升。另外,以螢光分光光譜儀(PL)來分析物質的光學性質及放光強度,發現有效使不具有常見發光性質的單體,成功達到一定的放光特性,假設在MIPOSS-NHBu單元之POSS奈米粒子上的胺基(-NH2)和2,5-二酮基二氫呋喃(dihydrofuran-2,5-dione)產生氫鍵作用力,導致羰基(C=O)被限制,使高分子鏈的分子間移動性被抑制而展現出強的放光。
另一方面,主要探討以聚胜肽為主的發光材料。2,4,6-triphenylaminne- functionalized polytyrosine (PTyr-TPA)是以4,4’-diamino-4’’-methoxytriphenylamine (TPA-NH2)為起始劑,透過活性開環聚合成功被合成出來。PTyr-TPA及TPA-NH2的光物理特性可由螢光光譜(PL)分析之,從PL光譜顯示TPA-NH2展現聚集誘導螢光淬滅(ACQ)的現象,然而透過接上硬桿狀的聚胜肽後,轉變成聚集誘導螢光發光(AIE)的材料。根據微差式掃描熱卡計(DSC)的結果,PTyr-TPA在混摻聚-4-乙烯基吡啶(P4VP)後,得到單一的玻璃轉移溫度(Tg),主要透過聚胜肽上的羧基(OH group)及P4VP上的吡啶環(Pyridine ring)產生氫鍵作用力,亦可由傅立葉紅外線光譜儀(FTIR)檢測之。在發光強度也有明顯的減弱,假設在高分子鏈中心的三苯胺單位限制分子內轉動的機制被釋放。
In this study, we modified maleimide isobutyl containing polyhedral oligomeric silsesquioxane (maleimide isobutyl polyhedral oligomeric silsesquioxane, MIPOSS) after attachment to the functional group like bromine and butylamine. The monomers were successfully prepared that with unusual fluorescent properties. Then, we synthesized a series of polystyrene-based alternating copolymers via a facile free radical polymerization where AIBN was an initiator. We discovered the increased thermal stability through thermal analysis. Furthermore, we analyzed the optical properties light intensity of materials by photo-Luminescence (PL). It was found that monomers without carrying with any common luminescence could still achieve fluorescence characteristic. We proposed that both intramolecular hydrogen bonding interaction between the amine group and dihydrofuran-2,5-dione groups. And lead to the clustering of locked C=O groups from POSS nanoparticles of MIPOSS-NHBu unit, it restricted the intramolecular motion of the polymer chain and exhibited strong light emission.
On the other hand, mainly we studied for the polypeptide-based fluorescent materials. The 2,4,6-triphenylaminne-functionalized polytyrosine (PTyr-TPA) was successfully synthesized by living ring-opening polymerization in the presence of 4,4’-diamino-4’’-methoxytriphenylamine (TPA-NH2) initiator. The photo-physical characteristics of TPA-NH2 and PTyr-TPA were illustrated through photo-Luminescence spectra, revealing that TPA-NH2 exhibited aggregation-caused quenching (ACQ) phenomena; however, it changed into an aggregation induced emission (AIE) material after attachment to the rigid-rod conformation of polytyrosine. Based on differential scanning calorimetry results, we observed that after blending PTyr-TPA with poly(4-vinylpyridine) (P4VP) a single glass transition temperature through the intermolecular hydrogen bonding of the phenolic OH groups in the PTyr backbone and pyridine ring in P4VP was revealed, as indicated by Fourier transforms infrared spectroscopy (FTIR). Obviously, the emission intensity of PTyr-TPA decreased after blending with P4VP, probably due to the release of the restricted intramolecular rotation of the triphenylamine unit in the center of the polymer.
摘要 iii
Abstract iv
目錄 vi
第一章 緒論 1
1-1 前言 1
1-1.1 螢光材料 1
1-1.2有機/無機奈米複合材料 2
1-1.3功能性聚胜肽及高分子聚摻 3
1-2 研究動機 4
第二章 文獻回顧 5
2-1 螢光(Fluorescence) 5
2-1.1 光激發光 ( Photoluminescence,PL ) 5
2-1.2 量子產率 (Quantum yield, Φ) 7
2-1.3 Aggregation-Induced Emission (AIE) 螢光材料 8
2-2 多面體矽氧烷寡聚物(Polyhedral Oligomeric Silsesquioxanes;簡稱POSS) 11
2-3 馬來酸酐之衍生物及其發光性質 12
2-4 聚胜肽(Polypeptide) 14
2-5氫鍵作用力 16
第三章 實驗方法及步驟 17
3-1 實驗內容及流程 17
3-2 實驗藥品 19
3-3 實驗步驟 (Part 1. - MIPOSS衍生物之螢光團) 20
3-3.1合成2,3-dibromosuccinimide isobutyl POSS之單體(MIPOSS-2Br) 20
3-3.2合成2-bromomaleimide isobutyl POSS之單體(MIPOSS-Br) 21
3-3.3合成2-(butylamino)-maleimide isobutyl POSS 之單體 (MIPOSS-NHBu) 22
3-3.4 透過自由基聚合合成Poly(MIPOSS-NHBu) 均質聚合物 23
3-3.5透過自由基聚合合成poly(S-alt-MIPOSS-Br)、poly(S-alt-MIPOSS-NHBu)和poly(AS-alt-MIPOSS-NHBu) 交替型共聚物 23
3-3.6 透過自由基聚合合成(HS-alt-MIPOSS-NHBu)交替型共聚物 25
3-4 實驗步驟 (Part 2. - PTyr-TPA化合物之螢光團) 26
3-4.1合成4,4’-Dinitro-4’’-methoxytriphenylamine單體 (TPA-NO2) 26
3-4.2合成4,4’-diamino-4’’-methoxytriphenylamine單體 (TPA-NH2) 27
3-4.3合成L-Tyrosine N-carboxyanhydride (Tyr-NCA) 28
3-4.4透過L-Tyrosine N-carboxyanhydride (Tyr-NCA)開環聚合合成2,4,6-triphenylamine- functionalized polytyrosine (PTyr-TPA)聚合物 28
3-4.5製備PTyr-TPA與P4VP之混摻 29
3-5 實驗儀器 30
3-5.1 核磁共振光譜儀(Nuclear Magnetic Resonance, NMR) 型號:Varian® Unity Inova-500 30
3-5.2傅立葉紅外線光譜儀(Fourier Transform Infrared Spectrometer, FT-IR) 型號:Bruker Tensor-27 31
3-5.3 熱重分析儀(Thermogravimetry Analysis, TGA) 型號:TAQ-20 31
3-5.4 微差掃描熱卡計(Differential Scanning Calorimeter, DSC) 型號:TAQ-50 32
3-5.5 膠體滲透層析儀(Gel Permeation Chromatography, GPC) 型號:Jasco PU-980 32
3-5.6 紫外光/可見光吸收光譜(Ultraviolet/Visible Spectrophotometer) 型號:Perkin Elmer UV/Vis Lambda 35 33
3-5.7 光激發螢光光譜儀(Photo-Luminescence, PL) 型號:LabGuide X350、450W Xe lamp 33
3-5.8 動態光散射儀 (Dynamic Light Scattering,DLS) 型號:Brookheven Instrument Corporation (90 Plus) 34
3-5.9 廣角度X光繞射儀(Wide Angle X-ray Diffraction, WAXD) 型號:NSRRC BL17A 35
3-5.10 基質輔助雷射脫附游離飛行時間質譜儀(Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometer, MALDI-TOF MS) 型號:Bruker Autoflex Ⅲ TOF/TOF 35
第四章 結果與討論 36
4-1 MIPOSS化合物之分析 (Part 1.) 36
4-1.1 MIPOSS單體衍生物之分子結構鑑定分析 36
4-1.2 MIPOSS衍生物交替型共聚物之分子結構鑑定分析 39
4-1.3 MIPOSS衍生物之熱性質分析 45
4-1.4 MIPOSS衍生物之光學性質分析 48
4-2 PTyr-TPA化合物之分析 (Part 2.) 57
4-1.1 PTyr-TPA之分子結構鑑定分析 57
4-2.2 PTyr-TPA/P4VP混摻之紅外線光譜分析 62
4-2.3 PTyr-TPA/P4VP混摻之廣角X光繞射分析 65
4-2.4 PTyr-TPA/P4VP混摻之熱性質分析 66
4-2.5 PTyr-TPA之光學性質分析 68
4-2.6 PTyr-TPA/P4VP混摻之光學性質分析 70
第五章 結論 73
第六章 參考文獻 74
1.C. J. Hawker and K. L. Wooley, Science, 2005, 309, 1200-1205.
2.S. M. Borisov and O. S. Wolfbies, Chem. Rev., 2008, 108, 423-461.
3.M. C. Cather, A. Kohnen and K. Meerholz, Adv. Mater., 2011, 23, 233-248.
4.H. N. Kim, Z. Guo, W. Zhu, J. Yoon and H. Tian, Chem. Soc. Rev., 2011, 40, 79-93.
5.H. Mattoussi, G. Palui and H. B. Na, Adv. Drug, Delivery Rev., 2012, 64, 138-166.
6.H. Wang, E. G. Zhao, J. W. Lam and B. Z. Tang, Mater. Today, 2015, 18, 365-377.
7.J. Wu, W. Liu, J. Ge, H. Zhang and P. Wang, Chem. Soc. Rev., 2011, 40, 3483-3495.
8.R. T. Kwok, C. W. Leung, J. W. Lam and B. Z. Tang, Chem. Soc. Rev., 2015, 44, 4228-4238.
9.A. J. Qin, J. W. Y. Lam and B. Z. Tang, Prog. Polym. Sci., 2012, 37, 182-209.
10.B. Liu, T. Dan and G. C. Bazan, Adv. Funct. Mater., 2007, 17, 2432-2438.
11.M. Shimizu, Y. Takeda, M. Higashi and T. Hiyama, Angew. Chem., Int. Ed., 2009, 48, 3707-3710.
12.S. Gan, W. Luo, B. He, L. Chen, H. Nie, R. Hu, A. Qin, Z. Zhao and B. Z. Tang, J. Mater. Chem. C, 2016, 4, 3705-3708.
13.E. Zhao, H. Li, J. Ling, H. Wu, J. Wang, S. Zhang, J. W. Y. Lam, J. Z. Sun, A. Qin and B. Z. Tang, Polym. Chem., 2014, 5, 2301-2308.
14.M. Wang, G. Zhang, D. Zhang, D. Zhu and B. Z. Tang, J. Mater. Chem., 2010, 20, 1858-1867.
15.M. G. Mohamed, F. H. Lu, J. L. Hong and S. W. Kuo, Polym. Chem., 2015, 6, 6340-6350.
16.J. Toal, K. A. Jones, D. Magde and W. C. Trogler, J. Am. Chem. Soc., 2005, 127, 11661-11665.
17.M. Wang, D. Zhang, G. Zhang, Y. Tang, S. Wang and D. Zhu, Anal. Chem., 2008, 80, 6443-6448.
18.D. Ding, J. Liu, G. Feng, K. Li, Y. Hu and B. Liu, Small, 2013, 9, 3093-3102.
19.J. D. Luo, Z. L. Xie, J. W. Y. Lam, L. Cheng, H. Y. Chen, C. F. Qiu, D. B. Zhu and B. Z. Tang, Chem. Commun., 2001, 1740-1741.
20.Y. Gong, L. Zhao, Q. Peng, D. Fan, W. Z. Yuan, Y. Zhang and B. Z. Tang, Chem. Sci., 2015, 6, 4438-4444.
21.S. Bao, Q. Wu, W. Qin, Q. Yu, J. Wang, G. Liang and B. Z. Tang, Polym. Chem., 2015, 6, 3537-3542.
22.X. Lou, Z. Zhao, Y. Hong, C. Dong, X. Xu, Y. Jia, F. Xia and B. Z. Tang, Nanoscale, 2014, 6, 14691-14696.
23.J. Yan, B. Zheng, D. Pan, R. Yang, Y. Xu, L. Wang and M. Yang, Polym. Chem., 2015, 6, 6133-6139.
24.M. G. Mohamed, K. C. Hsu, J. L. Hong and S. W. Kuo, Polym. Chem., 2016, 7, 135-145.
25.Y. Yu, J. Li, S. Chen, Y. Hong, K. M. Ng, K. Q. Luo and B. Z. Tang, ACS. Appl. Mater. Interfaces, 2013, 5, 4613-4616.
26.(a) E. Zhao, J. W. Y. Lam, L. Meng, Y. Hong, H. Deng, G. Bai, X. Huang, J. Hao and B. Z. Tang, Macromolecules, 2015, 48, 64-71; (b) W. C. Kim and D. C. Lee, Polym. Eng. Sci., 1995, 35, 1600-1604
27.T. Huang, Z. Wang, A. Qin, J. Z. Sun and B. Z. Tang, Acta Chim. Sin., 2013, 71, 973-979.
28.T. S. Haddad and J. D. Lichtenhan, Macromolecules, 1996, 29. 7302-7304.
29.F. Gao, B. M. Culbertson, Y. Tong and S. R.Schricker, Polym. Prepr., 2001, 41, 580-581.
30.P. T. Mather, H. G. Jeon, A. Romo-Uribe, T. S. Haddad and J. D. Lichtenhan, Macromolecules, 1999, 32, 1194-1203.
31.B. X. Fu, B. S. Hsiao, H. White, M. Rafailovich, P. T. Mather, H. G. Jeon, S. Phillips, J. D. Lichtenhan and J. Schwab, J. Polym. Int., 2000, 49, 437-440.
32.C. Zhang and R. M. Laine, J. Am, Chem. Soc., 2000, 122, 6979-6988.
33.R. M. Laine, J. Choi and I. Lee, Adv. Mater., 2001, 13, 800-803.
34.J. Choi, J. Harcup, A. F. Yee, Q. Zhu and R. M. Laine, J. Am. Chem. Soc., 2001, 123, 11420-11430.
35.Meyer D. E.; Chilkoti, A.; Biomacromolecules, 2002, 3, 357-367.
36.Y. S. Lu, Y. C. Lin and S. W. Kuo, Macromolecules, 2012, 45, 6547–6556.
37.Lin, Y. C.; Kuo, S. W., Polym. Chem., 2012, 3, 882.
38.Lee, H. F.; Sheu, H. S.; Jeng, U. S.; Huang, C. F.; Chang, F. C., Macromolecules, 2005, 38, 6551.
39.Yi, J. Z.; Goh, S. H.; Wee. A. T. S., Macromolecules, 2001, 34, 4662.
40.R. Tamaki, Y. Tanaka, M. Z. Asuncion, J. Choi and R. M. Laine, J. Am. Chem. Soc., 2001, 123, 12416-12417.
41.M. Boominathan, V. Sathish, M. Nagaraj, N. Bhuvanesh, S. Muthusubramanian, and S. Rajagopal, RSC Adv., 2013, 3, 22246-22252.
42.D. A. Skoog, D. M. West and F. J. Holler, “Fundamentals of analytical chemistry",5th edition , Saunders College Publishing, 1998.
43.W. C. Wu, C. Y. Chen, Y, Tian, S. H. Jang. Y. Hong, Y. Liu, R. Hu. B. Z. Tang, Y. T. Lee, C. T. Chen, W. C. Chen and A. K. Y. Jen, Adv. Funct. Mater., 2010, 20, 1413-1423
44.H. Lu, F. Su, Q. Mei, X. Zhou, Y. Tian, W. Tian, R. H. Johnson and D. R. Meldrum, J. Polym. Sci., Part A: Polym. Chem., 2012, 50, 890-899.
45.Y. Ren, J. W. Y. Lam, Y. Dong, B. Z. Tang and K. S. Wong, J. Phys. Chem. B, 2005, 109, 1135-1140.
46.J. Chen, B. Xu, X. Quyang, B. Z. Tang and Y. Cao, J. Phys. Chem. A, 2004, 108, 7522-7526.
47.J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, I. D. Williams, D. Zhu and Y. Ma, Chem. Mater., 2003, 15, 1535-1546.
48.Y. Li, F. Li, H. Zhang, W. Xie, H. Xu, B. Li, F. Shen, L. Ye, M. Hanif and Y. Ma, Chem. Commun., 2007, 231-233.
49.Z. Xie, B. Yang, G. Cheng, L. Liu, T. He, F. Shen, Y. Ma and S. Liu, Chem. Mater., 2005, 17, 1287-1289
50.B. Z. Tang, X. Zhan, G. Yu, P. P. S. Lee, Y. Liu and D. Zhu, J. Mater. Chem., 2001, 11, 2974-2978.
51.M. Shimizu and T. Hiyama, Chem. Asian J. 2010, 5, 1516-1531.
52.Y. Hong, J. W. Lam, and B. Z. Tang, Chem. Soc. Rev., 2011, 40, 5361-5388.
53.J. Mei, N. L. Leung, R. T. Kwok, J. W. Lam, and B. Z. Tang, Chem. Rev., 2015, 115, 11718-940.
54.A. Qin, J. W. Y. Lam and B. Z. Tang, Prog. Polym. Sci., 2012, 37, 182-209.
55.G. Li, L. Wang, H. Ni, and C. U. Pittman Jr, J. Inorg. Organomet. Polym., 2001, 11, 123-54.
56.S. W. Kuo and F. C. Chang, Prog. Polym. Sci., 2011, 36, 1649-1696.
57.D. B. Cordes, P. D. Lickiss and F. Rataboul, Chem. Rev, 2010, 110, 2081-2173.
58.T. P. Mather, H. G. Jeon, A. Romo-Uribe, T. S. Haddad, and J. D Lichtenhan, Macromolecules, 1999, 32, 1194-1203.
59.(a) E. Zhao, J. W. Y. Lam, L. Meng, Y. Hong, H. Deng, G. Bai, X. Huang, J. Hao and B. Z. Tang, Macromolecules, 2015, 48, 64-71.; (b) W. C. Kim and D. C. Lee, Polym. Eng. Sci., 1995, 35, 1600-1604
60.Y. Yan, B. Zheng, D. Pan, R. Yang, Y. Xu, L. Wang and M. Yang, Polym. Chem., 2015, 6, 6133-6139.
61.Fruton, J. S., Proceedings of the American Philosophical Society, 1985. 129(4), 313-370.
62.Beatty, A. M., Cryst. Eng. Comm. 2001, 51, 1.
63.Papadopoulous P., Floudas G., Klok H. A., Schnell I. and Pakula. T. Biomacromoleculars, 2004, 5, 81.
64.Blondelle S. E., Forood B., Houghten R.A. and Perez-Paya E. Biochemistry, 1997, 36, 8393.
65.Barth, A., Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2007, 1767(9), 1073-1101.
66.S. W. Kuo and C. J. Chen, Macromolecules, 2011, 44, 7315–7326.
67.Auer, H. E.; Mcknight R. P. Biochemistry, 1978, 14, 2798.
68.Kwei T. K. J. Polm. Sci.: Polym. Lett. Ed., 1984, 22, 307.
電子全文 電子全文(網際網路公開日期:20220730)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔