|
[1]C. H. Pan, T. C. Chang, T. M. Tsai, K. C. Chang, T. J. Chu, W. Y. Lin, M. C. Chen, and S. M. Sze, “Confirmation of filament dissolution behavior by analyzing electrical field effect during reset process in oxide-based RRAM,” Applied Physics Letters, vol. 109, no. 13, pp. 4, Sep, 2016. [2]T. J. Chu, T. C. Chang, T. M. Tsai, H. H. Wu, J. H. Chen, K. C. Chang, T. F. Young, K. H. Chen, Y. E. Syu, G. W. Chang, Y. F. Chang, M. C. Chen, J. H. Lou, J. H. Pan, J. Y. Chen, Y. H. Tai, C. Ye, H. Wang, and S. M. Sze, “Charge Quantity Influence on Resistance Switching Characteristic During Forming Process,” Ieee Electron Device Letters, vol. 34, no. 4, pp. 502-504, Apr, 2013. [3]T. C. Chang, F. Y. Jian, S. C. Chen, and Y. T. Tsai, “Developments in nanocrystal memory,” Materials Today, vol. 14, no. 12, pp. 608-615, Dec, 2011. [4]C. J. Chen, H. J. Yen, W. C. Chen, and G. S. Liou, “Resistive switching non-volatile and volatile memory behavior of aromatic polyimides with various electron-withdrawing moieties,” Journal of Materials Chemistry, vol. 22, no. 28, pp. 14085-14093, 2012. [5]J. C. Bruyere, and B. K. Chakraverty, “SWITCHING AND NEGATIVE RESISTANCE IN THIN FILMS OF NICKEL OXIDE,” Applied Physics Letters, vol. 16, no. 1, pp. 40-+, 1970. [6]T.-C. Chang, K.-C. Chang, T.-M. Tsai, T.-J. Chu, and S. M. Sze, “Resistance random access memory,” Materials Today, vol. 19, no. 5, pp. 254-264, 2016. [7]J. F. Scott, C. A. P. Dearaujo, L. D. McMillan, H. Yoshimori, H. Watanabe, T. Mihara, M. Azuma, T. Ueda, T. Ueda, D. Ueda, and G. Kano, “FERROELECTRIC THIN-FILMS IN INTEGRATED MICROELECTRONIC DEVICES,” Ferroelectrics, vol. 133, no. 1-4, pp. 47-60, 1992. [8]Y. M. Coic, O. Musseau, and J. L. Leray, “A STUDY OF RADIATION VULNERABILITY OF FERROELECTRIC MATERIAL AND DEVICES,” Ieee Transactions on Nuclear Science, vol. 41, no. 3, pp. 495-502, Jun, 1994. [9]K. Inomata, “Present and future of magnetic RAM technology,” Ieice Transactions on Electronics, vol. E84C, no. 6, pp. 740-746, Jun, 2001. [10]B. Heinrich, “Magnetic nanostructures. From physical principles to spintronics,” Canadian Journal of Physics, vol. 78, no. 3, pp. 161-199, Mar, 2000. [11]L. Wang, C. H. Yang, and J. Wen, “Physical Principles and Current Status of Emerging Non-Volatile Solid State Memories,” Electronic Materials Letters, vol. 11, no. 4, pp. 505-543, Jul, 2015. [12]D. H. Kang, D. H. Ahn, K. B. Kim, J. F. Webb, and K. W. Yi, “One-dimensional heat conduction model for an electrical phase change random access memory device with an 8F(2) memory cell (F=0.15 mu m),” Journal of Applied Physics, vol. 94, no. 5, pp. 3536-3542, Sep, 2003. [13]J. C. Scott, and L. D. Bozano, “Nonvolatile memory elements based on organic materials,” Advanced Materials, vol. 19, no. 11, pp. 1452-1463, Jun, 2007. [14]A. Sawa, “Resistive switching in transition metal oxides,” Materials Today, vol. 11, no. 6, pp. 28-36, Jun, 2008. [15]H. S. P. Wong, H. Y. Lee, S. M. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen, and M. J. Tsai, “Metal-Oxide RRAM,” Proceedings of the Ieee, vol. 100, no. 6, pp. 1951-1970, Jun, 2012. [16]J. T. Evans, and R. Womack, “AN EXPERIMENTAL 512-BIT NONVOLATILE MEMORY WITH FERROELECTRIC STORAGE CELL,” Ieee Journal of Solid-State Circuits, vol. 23, no. 5, pp. 1171-1175, Oct, 1988. [17]A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer, “Reproducible switching effect in thin oxide films for memory applications,” Applied Physics Letters, vol. 77, no. 1, pp. 139-141, Jul, 2000. [18]T. J. Chu, “Study on Resistive Switching Mechanisms and Fabrication Technology of Advanced Resistance Random Access Memory (RRAM),” PhD Thesis, National Sun Yat-sen University, 2016. [19]K. M. Kim, B. J. Choi, and C. S. Hwang, “Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films,” Applied Physics Letters, vol. 90, no. 24, pp. 3, Jun, 2007. [20]J. Y. Chen, C. L. Hsin, C. W. Huang, C. H. Chiu, Y. T. Huang, S. J. Lin, W. W. Wu, and L. J. Chen, “Dynamic Evolution of Conducting Nanofilament in Resistive Switching Memories,” Nano Letters, vol. 13, no. 8, pp. 3671-3677, Aug, 2013. [21]T. C. Chang, S. T. Yan, C. H. Hsu, M. T. Tang, J. F. Lee, Y. H. Tai, P. T. Liu, and S. M. Sze, “A distributed charge storage with GeO2 nanodots,” Applied Physics Letters, vol. 84, no. 14, pp. 2581-2583, Apr, 2004. [22]W.-C. Su, “Study on the Bionic Synapse Application of Lithium Aluminum Oxide Non-Volatile Resistive Random Access Memory ” Master Thesis, Department of Mechanical and Electro-Mechanical Engineering National Sun Yat-sen University, 2015. [23]P. Sigmund, “THEORY OF SPUTTERING .I. SPUTTERING YIELD OF AMORPHOUS AND POLYCRYSTALLINE TARGETS,” Physical Review, vol. 184, no. 2, pp. 383-+, 1969. [24]H. Xiao, Introduction to Semiconductor Manufacturing Technology: Prentice Hall, 2001. [25]D. A. Skoog, F. J. Holler, and S. R. Crouch, Principles of Instrumental Analysis: Cengage Learning, 2017. [26]F. Berry, Chemical Bonding and Spectroscopy in Mineral Chemistry: Springer Netherlands, 2012. [27]G. C. Shwartz, G. C. Schwartz, and K. V. Srikrishnan, Handbook of Semiconductor Interconnection Technology, Second Edition: CRC Press, 2006. [28]T. J. Chu, T. M. Tsai, T. C. Chang, K. C. Chang, C. H. Pan, K. H. Chen, J. H. Chen, H. L. Chen, H. C. Huang, C. C. Shih, Y. E. Syu, J. C. Zheng, and S. M. Sze, “Ultra-high resistive switching mechanism induced by oxygen ion accumulation on nitrogen-doped resistive random access memory,” Applied Physics Letters, vol. 105, no. 22, pp. 4, Dec, 2014. [29]Y. T. Su, K. C. Chang, T. C. Chang, T. M. Tsai, R. Zhang, J. C. Lou, J. H. Chen, T. F. Young, K. H. Chen, B. H. Tseng, C. C. Shih, Y. L. Yang, M. C. Chen, T. J. Chu, C. H. Pan, Y. E. Syu, and S. M. Sze, “Characteristics of hafnium oxide resistance random access memory with different setting compliance current,” Applied Physics Letters, vol. 103, no. 16, pp. 4, Oct, 2013. [30]Y.-C. Li, “Study on Resistance Random Access Memory with Self-formed Selector,” Master Thesis, National Sun Yat-Sen University, 2015.
|