跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/09 14:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許維倫
研究生(外文):Wei-lun Hsu
論文名稱:具可見光到近紅外光極廣波段結構色彩之固態網狀結構嵌段共聚物光子晶體研究
論文名稱(外文):Solid-State Network-Structured Block Copolymer PhotonicCrystal with Extremely Broad Structural Colorations Rangingfrom Visible to Near Infrared Wavelengths
指導教授:蔣酉旺
指導教授(外文):Yeo-Wan Chiang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:93
中文關鍵詞:光子晶體自組裝網狀結構TiO2 多孔材料嵌段共聚物
外文關鍵詞:Block CopolymerSelf-assemblyNetwork StructurePhotonic CrystalTiO2 Porous
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高分子量的雙嵌段共聚物可用於製造高分子的光子晶體因其具有易擴展性,高靈活性,重量輕,成本低等優點。我們首先利用一些均聚物或苯甲酸進行三相/雙相混參,使聚苯乙烯-共-聚2乙烯基吡啶的雙嵌段共聚物在三維結構的情形下增加其相分離尺度。再利用限制結構色彩和不同相分離尺度的苯乙烯-共-聚2乙烯基吡啶的雙嵌段共聚物薄膜搭配製備出從可見光到近紅外光波段的光子晶體,此外由於結構限制色彩是利用乙醇做為溶劑使聚2乙烯基吡啶形成奈米多孔網路微結構,其暴露在紫外光下可交聯其微結構,再利用有機或無機溶凝膠反填後,在高溫下煅燒後得到奈米多孔氧化鈦網絡微觀結構。如此便成功製備反射波段和水平可視角度無關的非晶態光子晶體。
關鍵字:嵌段共聚物、自組裝、網狀結構、光子晶體、TiO2多孔材料。
High-molecular-weight (high-Mw) block copolymers (BCPs) have been employed for the fabrication of polymer-based photonic crystals because of the advantages of easy scalability, high flexibility, light weight and low cost. First, a series of ternary blends of homopolymers or benzoic acid with network-structured high-Mw polystyrene-block-poly(2-vinyl pyridine) (PS-P2VP) BCPs are conducted at a fixed composition so as to control the periodicity of the network microstructures without the alternation of the morphology. With trapping of the structural coloration (TOSC), tunable photonic reflectance with extremely broad wavelengths from visible to near infrared (NIR) region is first carried out in the solid thin-film ternary blends. Furthermore, after removal of the additive homopolymers from the P2VP microdomains by a P2VP-selective ethanol, porous network nanochannels are observed, providing an excellent nanostructural template for the subsequent synthesis or infiltration of inorganic materials, which can largely enhance the mechanical and thermal properties as well as vary the refractive index contrast for photonic crystals. After exposure under UV irradiation, sol-gel reaction is, therefore, performed in the crosslinked nanoporous network microstructures, giving titanium oxide (TiO2) network microstructures after calcination. We found that the TiO2-based network thin-film photonic crystal is able to exhibit strong reflectivity with unique angle-independent optical property, namely, noniridescence or amorphous photonic crystal (APC). As a result, the manufacture of organic, inorganic or organic/inorganic hybrid network photonic crystals with extremely wide-range reflected wavelengths can be carried out for practical applications such as lasing, sensing, display and wave guide fileds.
Key word: Block copolymer, self-assembly, Network Structure, Photonic Crystal , TiO2 Porous
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
Contents v
List of Figure xiv
Table xx
Chapter 1. Introduction 1
1.1 Block Copolymer Properties 1
1.1.1 Block Copolymer (BCP) Self-assembly 1
1.2 Association of Metallic Species with PVP Polymers 3
1.2.1 PVP based BCPs 4
1.3 Photonic Crystals 8
1.3.1 Nature of photonic crystal 8
1.3.2 Amorphous Photonic crystal (APC) 10
1.3.3 Fabrication of Photonic Crystals from BCP self-assembly 12
1.3.4 Bioinspired Electrochemically Tunable BCP 17
1.3.5 BCP Photonic Crystal for Selective Fructose Detection 18
1.4. Controlled Orientation of BCP Microphase Separation 23
1.4.1 Substrate-induced Orientation 24
1.4.2 Solvent evaporation-induced Orientation 25
Chapter 2. Objectives 27
Chapter 3. Materials and Experimental Methods 28
3.1 Materials 28
3.2 Sample Preparation 29
3.2.1 Bulks Samples Preparation 29
3.2.2 Thin Film Samples Preparation 29
3.2.3 PS-P2VP/PS/P2VP Ternary and PS-P2VP/BA Binary Polymer Blending System 30
3.2.4 Trapping of Structural Coloration System 30
3.2.5 Crosslinked Porous Polymeric Templates Preparation 31
3.2.6 Porous TiO2 Templates Preparation 31
3.3 Microstructural Characterization 31
3.3.1 Transmission Electron Microscopy (TEM) 31
3.3.2 Scanning Electron Microscopy (SEM) 32
3.3.3 Ultra-small Angle X-ray Scattering (USAXS) 32
3.3.4 Reflectivity measurements 32
Chapter 4. Results and Discussion 34
4.1 Characterization of the PS-P2VP BCPs 34
4.1.1 Microphase Separation of PS-P2VP BCPs in bulk 34
4.1.2 Microphase Separation of PS-P2VP BCPs in Thin Film 35
4.1.3 PS-P2VP/PS/P2VP Ternary Blends and PS-P2VP/BA Binary Blends in Thin Film 37
4.2 Optical Properties of PS-P2VP Thin-Film Photonic Crystals 44
4.2.1 Lamella-Structured PS-P2VP Photonic Crystal Thin Films 44
4.2.2 Optical Properties of Network-Structured PS-P2VP Photonic Thin Films 46
4.3 Infiltration and Backfilling of High-Refractive-Index Inorganics Using Nanoporous Network Templates 61
4.3.1 Crosslinked Nanoporous Network Templates by UV Irradiation 61
4.3.2 High-Refractive-Index Network-Structured Photonic Crystal Thin Films 63
Chapter 5. Conclusion 71
Chapter 6. References 73
1.Holland, B. T.; Blanford, C. F.; Stein, A. Science 1998, 281, 538.
2.Braun, P. V.; Wiltzius, P. Nature 1999, 402,603
3.Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
4.Park, C.; Yoon, J.; Thomas, E. L. Polymer 2003, 44, 6725.
5.Muthukumar M.; Ober C. K.; Thomas E. L. Science 1997, 277, 1225.
6.Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Nature 1988, 334, 598.
7.Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.
8.Forster,S.;Antonietti, M., Adv. Mater. 1998, 10, 195..
9.Kuo, S. W.; Wu, C. H.; Chang, F. C., Macromolecules 2004, 37, 192.
10.Antoneitti, M.; Wenz, E.; Bronstein, L.; Seregina, M., Adv. Mater. 1995, 7, 1000.
11.Tsutsumi, K.;Funaki, Y.; Hirokawa, Y.; Hashimoto, T., Langmuir 1999, 15, 5200.
12.Hashimoto, T.; Harada, M.; Sakamoto, N., Macromolecules 1999, 32, 6867.
13.Percy, M. J.; Barthet, C.; Lobb, J. C.; Khan, M. A.; Lascelles, S. F.; Vamvakaki, M.; Armes, S. P., Langmuir 2000, 16, 6913.
14.Amalvy, J. I; Percy, M. J.; Armes, S.P.; Wiese, H., Langmuir 2001, 17, 4770.
15.Cho, G.; Jang, J.; Jung, S.; Moon I. S.; Lee, J. S.; Cho, Y. S.; Fung, B. M.; Yuan, W. L.; O’Rear, E. A., Langmuir 2002, 18, 3430.
16.Fournaris, K. G.; Karakassides, M. A.; Petridis, D.; Yiannakopoulou, K., Chem. Mater. 1999, 11, 2372.
17.Moffitt, M.; Eisenberg, A., Chem. Mater. 1995, 7, 1178.
18.Zhao, H.; Douglas, E. P., Chem. Mater. 2002, 14, 1418.
19.Zhao, H. Y.; Douglas, e. P.; Harrison, B. S.; Schanze, K. S., Langmuir 2001, 17, 8428.
20.Pearson, R. G.; J. Am. Chem. Soc. 1963, 85, 3533.
21.Zhao, Y.; Thorkelsson, K.; Mastroianni, A. J.; Schilling, T.; Luther, J. M.; Rancatore, B. J.; Matsunaga, K.; Jinnai, H.; Wu, Y.; Poulsen, D.; Frechet, J. J.; Paul Alivisatos, A.; Xu, T., Nat. Mater. 2009, 8, 979.
22.Kertesz, K.; Balint, Z.; Vertesy, Z.; Mark, G. I.; Lousse, V.; Vigneron, J. P.; Rassart, M.; Biro, L. P. Phys. Rev. E.2006, 74, 021922.
23.Yablonovitch, E. Phys. Rev. Lett.1987, 58, 2059.
24.John, S. Phys. Rev. Lett.1987, 58, 2486.
25.Vlasov, Y A.; O''Boyle, M.; Harnann, H. F.; McNab, S. J. Nature 2005, 438, 65.
26.Bayindir, M.; Sorin, F.; Abouraddy, A. F.; Viens, J.; Hart, S. D.; Joannopoulos, J. D.; Fink, Y. Nature 2004, 431, 826.
27.J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, Optics Letters 1991, 21, 1547.
28.T. F. Krauss, R. M. DeLaRue, and S. Brand, Nature 1996, 383, 699.
29.Busch, K.; John, S. Phys. Rev. Lett.1999, 83, 967.
30.Finkelmann, H.; Kim, S. T.; Munoz, A.; Palffy-Muhoray, P.; Taheri, B. Adv. Mater. 2001, 13, 1069.
31.Foulger, S. H.; Jiang, P.; Lattarn, A.; Smith, D. W.; Ballato, J.; Dausch, D. E.; Grego, S.; Stoner, B. R. Adv. Mater. 2003, 15, 685.
32.Lee, Y. J.; Braun, P. V. Adv. Mater. 2003, 15, 563.
33.Ozaki, R.; Matsui, T.; Ozaki, M.; Yoshino, K. Appl. Phys. Lett.2003, 82, 3593.
34.Valkama, S.; Kosonen, H.; Ruokolainen, J.; Haatainen, T.; Torkkeli, M.; Serimaa, R.; Ten Brinke, G.; Ikkala, O Nat. Mater 2004, 3, 872.
35.Lawrence, J. R.; Shim, G H.; Jiang, P.; Han, M. G; Ying, Y. R.; Foulger, S. H. Adv. Mater. 2005, 17, 2344.
36.Arsenault, A. C.; Clark, T. J.; von Freymann, G.; Cademartiri, L.; Sapienza, R.; Bertolotti, J.; Vekris, E.; Wong, S.; Kitaev, V.; Manners, 1.; Wang, R. Z.; John, S.; Wiersma, D.; Ozin, G. A. Nat. Mater. 2006, 5, 179.
37.Lin. S.Y.; Fleming. J. G.; J. Lightwave Technol. 1999, 17, 1944.
38.Lin. S.Y.; Fleming. J. G.; Opt. Lett. 1999, 24, 49.
39.Krauss, T. F.; DeLaRue, R. M.; Brand, S. Nature 1996, 383, 699.
40.Noda, S.; Tomoda, K.; Yamamoto, N.; Chutinan, A. Science 2000, 289, 604.
41.Qi, M. H.; Lidorikis, E.; Rakich, P. T.; Johnson, S. G; Joannopoulos, J. D.; Ippen, E. P.; Smith, H. I. Nature 2004, 429, 538.
42.Ondiglia, V. P.; Natarajan, L. V.; Sutherland, R. L.; Tomlin. D.; Bunning, T. J. Adv. Mater. 2002, 14, 187.
43.Campbell, M.; , Sharp, D. N.; Harrison, M. T.; Denning, R. G.; Turberfield, A. J. Nature 2000, 404, 53.
44.Takeoka, Y. J. Mater. Chem. 2012, 22, 23299.
45.Joannopoulos, J. D.; Meade, R. D.; Winn, J. N., Princeton University Press: Princeton, 1995.
46.Kang, Y.; Walish, J. J.; Gorishnyy, T.; Thomas, E. L. Nat. Mater. 2007, 6, 957
47.Qi, M. H.; Lidorikis, E.; Rakich, P. T.; Johnson, S. G; Joannopoulos, J. D.; Ippen, E. P.; Smith, H. I. Nature 2004, 429, 538.
48.Urbas, A.’ Sharp, R.; Fink, Y.; Thomas, E. L.; Xenidou, M.; Fetters, L. J. Adv. Mater. 2000, 12, 812.
49.Deng, T.; Chen, C.; Honeker, C.; Thomas, E. L. polymer 2003, 44, 6549.
50.Urbas, A. M.; Maldovan, M.; Derege, P.; Thomas, E. L. Adv. Mater. 2002, 14, 1850.
51.Walish, J. J.; Kang, Y. J.;Mickiewicz, R.A.;Thomas, E.T. Adv. Mater. 2009, 21, 3078.
52.Ayyub, O. B.; Ibrahim, M. B.; Briber, R. M.; Kofinas, P. Biosensors and Bioelectronics 2013, 46, 124.
53.Joannopoulos, J. D.; Meade, R. D.; Winn, J. N., Photonic Crystals: Molding the Flow of Light. Princeton University Press: Princeton, NJ, 1995.
54.Yoon, J. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, 2006.
55.Lee, H. D.; Kim, H. Y.; Kim, J. K., Macromolecules 2006, 39, 2027.
56.Kim, G.; Libera, M. Macromolecules 1998, 31, 2569.
57.Fukunaga, K.; Elbs, H.; Magerle, R.; Krausch, G. Macromolecules, 2000, 33, 947.
58.Keller, A.; Pedemonte, E.; Willmouth, F. M. Nature 1970, 225, 538.
59.Albalak, R. J.; Thomas, E. L.; J. Polym. Sci. Part B Polym. Phys. 1993, 32, 37.
60.Morkved, T. L.; Lu, M.; Urbas, A. M.; Ehrichs, E. E.; Jaeger, H. M.; Mansky, P.; Russell, T. P. Science 1996, 273, 931.
61.Thurn-Albrecht, T.; Schotter, J.; Kästle, G. A.; Emley, N.; Shibauchi,T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Science 2000, 290, 2126.
62.Mansky, P.; Liu, Y.; Huang, E.; Russell, T. P.; Hawker, C. Science 1997, 275, 1458.
63.Huang, E.; Rockford, L.; Russell, T. P.; Hawker, C. J. Nature 1998, 395, 757.
64.Hashimoto, T.; Bodycomb, J.; Funaki, Y.; Kimishima, K. Macromolecules 1999, 32, 952.
65.Rockford, L.; Liu, Y.; Mansky, P.; Russell, T. P. Phys. Rev. Lett. 1999, 82, 2602.
66.Kim, S. O.; Solak, H. H.; Stoykovich, M. P.; Ferrier, N. J.; dePablo, J. J.; Nealey, P. F. Nature, 2003, 424, 411.
67.Segalman, R. A.; Yokoyama, H.; Kramer, E. J. Adv. Mater. 2001, 13, 1152.
68.Cheng, J. Y.; Ross, C. A.; Thomas, E. L.; Smith, H. I.; Vancso, G. J. Appl. Phys. Lett. 2002, 81, 3657.
69.Martin, T. M.; Young, D. M. Polymer 2003, 44, 4747.
70.Kim, S. H.; Misner, M. J.; Xu, T.; Kimura, M.; Russell, T. P. Adv. Mater. 2004, 16, 226.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊