跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/06 21:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄧評元
研究生(外文):Ping-Yuan Deng
論文名稱:四元Ge-Sn-Co-Sb熱電材料之相圖及鍺/錫摻雜之CoSb3方鈷礦結構合金熱電性質
論文名稱(外文):Phase diagram of quaternary Ge-Sn-Co-Sb system andthermoelectric properties of (Ge,Sn) doped skutterudite CoSb3
指導教授:吳欣潔吳欣潔引用關係
指導教授(外文):Hsin-Jay Wu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:174
中文關鍵詞:熱電材料方鈷礦結構CoSb3液相線投影圖熱電性質
外文關鍵詞:Liquidus projectionSkutteruditethermoelectric materialsCoSb3Ge-Sn-Co-Sbthermoelectric property
相關次數:
  • 被引用被引用:0
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
尋找無限的能源一直是人類的宿願之一,加上近年來環保意識高漲,許多學者無不投入開發高轉換效率能源材料。熱電材料擁有將熱能與電能互相轉換的優異能力,尤其以廢熱回收(waste heat recovery)蔚為大宗。而在中溫型熱電材料中,CoSb3方鈷礦結構熱電材料擁有極高的發展潛力,經由添加摻雜物改變晶體結構、電子能階與微結構可達到在400 oC ~600 oC之間優異的熱電性質。相圖為熱力學的結晶也是材料科學的基礎,透過相變化、微結構以及組成等種種因素對熱電性質進行進一步的探究,文獻上對於此類資訊描述較少,留下了很多探索方向。因鍺(Germanium)與錫(Tin)有著優異導電性,透過此兩元素的添加進行熱電性質的提升。本研究致力於建立Ge-Sn-Co-Sb四元相圖。本研究的工作包括:(1)以實驗建構Ge-Co-Sb三元液相線投影圖、(2)Sn-Co-Sb三元液相線投影圖,(3)選定化學計量比組成之CoSb3之二元合金,進行熱電性質量測及討論,(4)在CoSb3中摻雜Ge、Sn,並量測熱電性質及討論。由本研究結果可知,Ge-Sn-Co-Sb液相線投影圖由實驗分析,總共存在16個首要析出相區。在熱電性質中,多孔性材料CoSb3在544 K下量測到zT值為0.265,比起單晶CoSb3有著50倍的突破,而在Ge摻雜量為1 %的CoSb3在661 K下量測到0.278的值,最佳熱電優值的表現溫度往較高的溫度偏移,同溫下比起多孔性材料CoSb3有著接近123 %的提升。
Thermoelectric materials and devices can generate electricity from thermal energy directly, and can be useful in waste heat recovery. The skutterudite CoSb3 has been a cost-effective alternative for the mid-temperature thermoelectric generator owing to its promising electrical transport properties. Herein, minor dopant of Ge or/and Sn is introduced into the CoSb3 for optimizing the thermal/electrical transport behaviors. Phase diagram of ternary Sn-Co-Sb and Ge-Co-Sb systems are crucial in illustrating the relationships between the phase stability, microstructures and thermal-to-electricity conversion, and have been determined by experiments. Herein the liquidus projections of ternary Ge-Co-Sb and Sn-Co-Sb system are constructed by collecting the information from various as-solidified Sn-Co-Sb and Ge-Co-Sb alloys. On the basis of as-determined phase diagram, selective ternary Ge-doped/Sn-doped CoSb3 alloys are synthesized and their thermoelectric properties are measured within 300 K-700 K. Among the Ge/Sn-doped CoSb3, the alloy with 1 at% Ge content reaches the highest peak value of zT~ 0.28 at 661 K, showing 123 % enhancement compared with that of undoped CoSb3.
摘要 ii
Abstract iii
一、前言 1
二、文獻回顧 8
2-1熱電元件 8
2-2 CoSb3熱電材料 10
2-3相圖 12
2-4 Co-Ge二元系統相圖 13
2-5 Co-Sb二元系統相圖 15
2-6 Ge-Sb二元系統相圖 17
2-7 Co-Sn二元系統相圖 18
2-8 Sn-Sb二元系統相圖 20
三、實驗方法 22
3-1 Ge-Sn-Co-Sb四元系統之液相線投影圖 22
3-1-1合金配置 22
3-1-2樣品處理與分析 23
3-2 四元Ge-Sn-Co-Sb系統之熱電性質 24
3-2-1 合金配置 24
3-2-2 熱電性質量測 26
四、結果與討論 28
4-1 四元Ge-Sn-Co-Sb系統液相線投影圖 28
4-2 Ge-Co-Sb系統液相線投影圖 30
4-2-1 Co首要析出相區 36
4-2-2 Co3Ge2Sb首要析出相區 38
4-2-3 CoSb首要析出相區 48
4-2-4 CoGe首要析出相區 50
4-2-5 CoGe2首要析出相區 55
4-2-6 CoSb2首要析出相區 64
4-2-7 Ge首要析出相區 70
4-2-8 CoSb3首要析出相區 77
4-2-9 Sb首要析出相區 84
4-2-10 三元Ge-Co-Sb系統液相線投影圖總結 86
4-3 Sn-Co-Sb三元系統液相線投影圖 87
4-3-1 CoSb首要析出相區 92
4-3-2Co3Sn2首要析出相區 103
4-3-3CoSn首要析出相區 105
4-3-4CoSbSn2首要析出相區 106
4-3-5 CoSb2首要析出相區 107
CoSn2首要析出相區 111
4-3-7 三元Sn-Co-Sb系統液相線投影圖總結 112
4-4四元Ge-Sn-Co-Sb系統之熱電性質 113
4-4-1 CoSb3合金製程比較 113
4-4-2 二元CoSb3合金熱電性質探討 118
4-4-3四元Ge-Sn-Co-Sb合金熱電性質探討 121
五、結論 152
七、參考文獻 155
[1]. N. Espinosa, M. Lazard, L. Aixala and H. Scherrer, "Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery", Journal of Electronic Materials, Vol. 39, pp. 1446-1455, (2010)
[2].G. J. Synder and E. S. Toberer, "Complex thermoelectric materials", nature materials, Vol. 7, pp. 105-114, (2008)
[3].X. Zhang and L.-D. Zhao, "Thermoelectric materials: Energy conversion between heat and electricity", Journal of Materiomics, Vol. 1, pp. 92-105, (2015)
[4].G. S. Nolas, D. T. Morelli and T. M. Tritt, "SKUTTERUDITES: A Phonon-Glass-Electron Crystal Approach to Advanced Thermoelectric Energy Conversion Applications", Annual Review of Materials Science, Vol. 29, pp. 89-116, (1999)
[5].G. S. Nolas, H. Takizawa, T. Endo, H. Sellinschegg and D. C. Johnson, "Thermoelectric properties of Sn-filled skutterudites", Applied Physics Letters, Vol. 77, pp. 52-54, (2000)
[6].Y. Kawaharada, K. Kurosaki, M. Uno and S. Yamanaka, "Thermoelectric properties of CoSb3", Journal of Alloys and Compounds, Vol. 315, pp. 193–197, (2001)
[7].S. Hui, M. D. Nielsen, M. R. Homer, D. L. Medlin, J. Tobola, J. R. Salvador, J. P. Heremans, K. P. Pipe and C. Uher, "Influence of substituting Sn for Sb on the thermoelectric transport properties of CoSb3-based skutterudites", Journal of Applied Physics, Vol. 115, pp. 103704, (2014)
[8].X. Shi, J. Yang, J. R. Salvador, M. Chi, J. Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang and L. Chen, "Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports", J Am Chem Soc, Vol. 133, pp. 7837-7846, (2011)
[9].G. Rogl, A. Grytsiv, P. Rogl, N. Peranio, E. Bauer, M. Zehetbauer and O. Eibl, "n-Type skutterudites (R,Ba,Yb)yCo4Sb12 (R=Sr, La, Mm, DD, SrMm, SrDD) approaching ZT≈2.0", Acta Materialia, Vol. 63, pp. 30-43, (2014)
[10].J. Dong, K. Yang, B. Xu, L. Zhang, Q. Zhang and Y. Tian, "Structure and thermoelectric properties of Se- and Se/Te-doped CoSb3 skutterudites synthesized by high-pressure technique", Journal of Alloys and Compounds, Vol. 647, pp. 295-302, (2015)
[11].D. T. Morelli, G. P. Meisner, B. Chen, S. Hu and C. Uher, "Cerium filling and doping of cobalt triantimonide", Physical Review B, Vol. 56, pp. (1997)
[12].X. Ye, G. Chen, B. Duan and P. Zhai, "Effect of Te–Se–S Triple Doping on the Thermoelectric Properties of CoSb3 Skutterudites", Journal of Electronic Materials, Vol. 44, pp. 1674-1678, (2014)
[13].J. Yu, W.-Y. Zhao, B. Lei, D.-G. Tang and Q.-J. Zhang, "Effects of Ge Dopant on Thermoelectric Properties of Barium and Indium Double-Filled p-Type Skutterudites", Journal of Electronic Materials, Vol. 42, pp. 1400-1405, (2012)
[14].S. Choi, K. Kurosaki, A. Harnwunggmoung, Y. Miyazaki, Y. Ohishi, H. Muta and S. Yamanaka, "Enhancement of thermoelectric properties of CoSb3 skutterudite by addition of Ga and In", Japanese Journal of Applied Physics, Vol. 54, pp. 111801, (2015)
[15].X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang and C. Uher, "Structure and Transport Properties of Double-Doped CoSb2.75Ge0.25–xTex(x= 0.125–0.20) with in Situ Nanostructure", Chemistry of Materials, Vol. 23, pp. 2948-2955, (2011)
[16].G. Rogl, A. Grytsiv, P. Heinrich, E. Bauer, P. Kumar, N. Peranio, O. Eibl, J. Horky, M. Zehetbauer and P. Rogl, "New bulk p-type skutterudites DD0.7Fe2.7Co1.3Sb12−xXx (X=Ge, Sn) reaching ZT>1.3", Acta Materialia, Vol. 91, pp. 227-238, (2015)
[17].T. Dahal, Y. Lan, Q. Jie, W. Liu, K. Dahal, L. Tang, C. Guo and Z. Ren, "Substitution of Antimony by Tin and Tellurium in n-Type Skutterudites CoSb2.8Sn x Te0.2−x", Jom, Vol. 66, pp. 2282-2287, (2014)
[18].B. Duan, P. Zhai, L. Liu and Q. Zhang, "Thermoelectric Properties of Trisubstituted Skutterudite Co4Sb11Ge1−x−y Te x Se y Compounds", Journal of Electronic Materials, Vol. 41, pp. 1120-1124, (2011)
[19].F. Duan, L. Zhang, J. Dong, J. Sakamoto, B. Xu, X. Li and Y. Tian, "Thermoelectric properties of Sn substituted p-type Nd filled skutterudites", Journal of Alloys and Compounds, Vol. 639, pp. 68-73, (2015)
[20].B. R. Ortiz, C. M. Crawford, R. W. McKinney, P. A. Parilla and E. S. Toberer, "Thermoelectric properties of bromine filled CoSb3skutterudite", J. Mater. Chem. A, Vol. 4, pp. 8444-8450, (2016)
[21].G. S. Nolas, J. Yang and H. Takizawa, "Transport properties of germanium-filled CoSb3", Applied Physics Letters, Vol. 84, pp. 5210-5212, (2004)
[22].H. Kitagawa, M. Wakatsuki, H. Nagaoka, H. Noguchi, Y. Isoda, K. Hasezaki and Y. Noda, "Temperature dependence of thermoelectric properties of Ni-doped CoSb3", Journal of Physics and Chemistry of Solids, Vol. 66, pp. 1635-1639, (2005)
[23].W.-S. Liu, B.-P. Zhang, J.-F. Li, H.-L. Zhang and L.-D. Zhao, "Enhanced thermoelectric properties in CoSb3-xTex alloys prepared by mechanical alloying and spark plasma sintering", Journal of Applied Physics, Vol. 102, pp. 103717, (2007)
[24].W.-S. Liu, B.-P. Zhang, L.-D. Zhao and J.-F. Li, "Improvement of Thermoelectric Performance of CoSb3−xTex Skutterudite Compounds by Additional Substitution of IVB-Group Elements for Sb", Chemical Materials, Vol. 20, pp. 7526–7531, (2008)
[25].朱旭山, "熱電材料原理與其應用", 電子與材料雜誌, Vol. 22, pp. 78-89, (2005)
[26].C. C. Li, F. Drymiotis, L. L. Liao, H. T. Hung, J. H. Ke, C. K. Liu, C. R. Kao and G. J. Snyder, "Interfacial reactions between PbTe-based thermoelectric materials and Cu and Ag bonding materials", J. Mater. Chem. C, Vol. 3, pp. 10590-10596, (2015)
[27].H. Kleinke, "New bulk Materials for Thermoelectric Power Generation: Clathrates and Complex Antimonides†", Chemistry of Materials, Vol. 22, pp. 604-611, (2010)
[28].R. Chandra Mallik, E. Mueller and I.-H. Kim, "Thermoelectric properties of indium filled and germanium doped Co4Sb12 skutterudites", Journal of Applied Physics, Vol. 111, pp. 023708, (2012)
[29].B. Duan, P. Zhai, C. Xu, S. Ding, P. Li and Q. Zhang, "Thermoelectric performance of tellurium and sulfur double-substituted skutterudite materials", Journal of Materials Science, Vol. 49, pp. 4445-4452, (2014)
[30].B. Chen, J. H. Xu, C. Uher, D. T. Morelli, G. P. Meisner, J. P. Fleurial, T. Caillat and A. Borshchevsky, "Low-temperature transport properties of the filled skutterudites CeFe42 xCoxSb12", Physical Review B, Vol. 55, pp. 1476-1480, (1997)
[31].H. Takizawa, K. Miura, M. Ito, T. Suzuki and T. Endo, "Atom insertion into the CoSb skutterudite host lattice under high pressure", Journal of Alloys and Compounds, Vol. 282, pp. 79-83, (1999)
[32].G. S. Nolas, C. A. Kendziora and H. Takizawa, "Polarized Raman-scattering study of Ge and Sn-filled CoSb[sub 3]", Journal of Applied Physics, Vol. 94, pp. 7440, (2003)
[33].K. Ishida and T. Nishizawa, "Co-Ge (Cobalt - Germanium) ", Binary Alloy Phase Diagrams II Ed., Ed. T.B. Massalski, Vol. 1.2, pp. (1990)
[34].H. Okamoto, "Co-Sb (Cobalt - Antimony)", Journal of Phase Equilibria, Vol. 12, pp. 244-245, (1991)
[35].H. Okamoto, "Ge-Sb (Germanium - Antimony)", Journal of Phase Equilibria, Vol. 22, pp. 91-92, (2001)
[36].S.-w. Chen, Y.-k. Chen, H.-j. Wu, Y.-c. Huang and C.-m. Chen, "Co Solubility in Sn and Interfacial Reactions in Sn-Co/Ni Couples", Journal of Electronic Materials, Vol. 39, pp. 2418-2428, (2010)
[37].G. P. Vassilev and K. I. Lilova, "Contribution to the thermodynamics of Co-Sn System", Archives of metallurgy and materials, Vol. 51(3), pp. 365-375, (2006)
[38].H. Okamoto, "Sb-Sn (Antimony-Tin)", Journal of Phase Equilibria and Diffusion, Vol. 33, pp. 347-347, (2012)
[39].http://www-crismat.ensicaen.fr/spip.php?rubrique952&lang=fr
[40].https://www.netzsch-thermal-analysis.com/en/products-solutions/thermaldiffusivity-conductivity/lfa-467-hyperflash/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊