[1]Fraunhofer Institute for Solar Energy Systems, "Photovoltaics report," https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf, 2016.
[2] S. Narasimha, G. Crotty, T. Krygowski, A. Rohatgi, and D. L. Meier," Back surface field and emitter passivation effects in the record high efficiency N-type dendritic web silicon solar cell," in proc. 26th IEEE photovoltaic specialists conference, Anaheim, California, USA, p. 235, 1997.
[3]T. Jana, S. Mukhopadhyay and S. Ray, "Low temperature silicon oxide and nitride for surface passivation of silicon solar cells," Solar Energy Materials and Solar Cells, vol. 71, no. 2, p. 197, 2002.
[4]J. Zhao, A. Wang and M. A. Green, "High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates," Solar Energy Materials and Solar Cells, vol. 65, p. 429, 2001.
[5]C. Kranz, S. Wyczanowski, S. Dorn, K. Weise, C. Klein, K. Bothe, T. Dullweber, and R. Brendel, "Impact of the rear surface roughness on industrial-type PERC solar cells," in proc. 27th European Photovoltaic Solar Energy Conference, Frankfurt, Germany, p. 557, 2012.
[6]S. Xiao and S. Xu, "High-efficiency silicon solar cells—materials and devices physics," Critical Reviews in Solid State and Materials Sciences, vol. 39, no. 4, p. 217, 2014
[7]M. D. Lammert and R. J. Schwartz, "The interdigitated back contact solar cell: silicon solar cell for use in concentrated sunlight," IEEE Transactions On Electron Devices, vol. 24, no. 4, p. 337, 1977.
[8]S. Dauwe, J. Schmidt, and R. Hezel, "Very low surface recombination velocities on P- and N-type silicon wafers passivated with hydrogenated amorphous silicon films," in proc. 29th IEEE Photovoltaic Specialists Conference, New Orleans, Louisiana, USA, p. 1246, 2002.
[9]K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, "Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%," Nature Energy, vol. 2, no. 5, 17032, 2017.
[10]B. J. Stanbery, "Copper indium selenides and related materials for photovoltaic devices," Critical Reviews in Solid State and Materials Sciences, vol. 27, no. 2, p. 73, 2002.
[11]F. Abou-Elfotouh, D. J. Dunlavy, and T. J. Coutts, "Intrinsic defect states in CuInSe2 single crystals," Solar Cells, vol. 27, p. 237, 1989.
[12] S. R. Kodigala, Thin films and nanostructures Cu(In1-xGax)Se2 based thin film solar cells, 1st ed. Academic Press, 2010.
[13] International Technology Roadmap for Photovoltaic (ITRPV), "ITRPV 2016 Results," http://www.itrpv.net/Reports/Downloads, 2017.
[14] 劉禮寬, "製備CuInSe2磊晶薄膜並應用於超薄矽晶太陽能電池", 中山大學材料所碩士論文, 2016.[15] 劉士綸, "新型高效率超薄矽基異質接面太陽電池的元件結構設計模擬及製作", 中山大學材料所碩士論文, 2016.[16] M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, "24.7% record efficiency HIT solar cell on thin silicon wafer," IEEE Journal of Photovoltaics, vol. 4, no. 1, p. 96, 2014.
[17] M. A. Green, "Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients," Solar Energy Materials and Solar Cells, vol. 92, no. 11, p. 1305-10, 2008.
[18] A. Wang, J. Zhao, and M. A. Green, "24% efficient silicon solar cells," Applied Physics Letters, vol. 57, no. 6, p. 602, 1990.
[19] M. Rüdiger, J. Greulich, A. Richter, and M. Hermle, "Parameterization of free carrier absorption in highly doped silicon for solar cells," IEEE Transactions on Electron Devices, vol. 60, no. 7, p. 2156, 2013.
[20] D. M. Caughey, and R. E. Thomas, "Carrier mobilities in silicon empirically related to doping and field," Proceedings of the IEEE, vol. 55, no. 12, p. 2192, 1967.
[21] N. D. Arora, J. R. Hauser and D. J. Roulston, "Electron and hole mobilities in silicon as a function of concentration and temperature," IEEE Transactions on Electron Devices, vol. 29, no. 2, p. 292, 1982.
[22] D. N. Wright, E. S. Marstein and A. Holt, "Double layer anti-reflective coatings for silicon solar cells," In proc. 31th IEEE Photovoltaic Specialists Conference, Lake Buena Vista, FL, USA, p. 1237, 2005.
[23] J. G. Fossom, R. P. Mertens, D. S. Lee, and J. F. Nijs, "Carrier recombination and lifetime in hightly doped silicon," Solid-State Electronics, vol. 26, no. 6, p. 560, 1983.
[24] O. Madelung, Semiconductors-Data-Handbook, 3rd-ed. Springer-Verlag Berlin Heidelberg GmbH, 2004.
[25] M. T. Azar, H. J. Moller, and N. Shoemaker, "Trapping lifetime and carrier mobility measurements in CuInSe2 using surface acoustic wave technique," IEEE Transactions On Ultrasonics, Ferroelectrics and Frequency Control, vol. 40, no. 2, p. 149, 1993.
[26] H. T. Shaban, M. Mobarak, and M. M. Nassary, "Characterization of CuInSe2 single crystal," Physica B: Condensed Matter, vol. 389, no. 2, p. 351, 2007.
[27]S. Thiru, M. Asakawa, K. Honda, A. Kawaharazuka, A. Tackeuchi, T. Makimoto, and Y. Horikoshi, "Study of single crystal CuInSe2 thin films and CuGaSe2/CuInSe2 single quantum well grown by molecular beam epitaxy," Journal of Crystal Growth, vol. 425, p. 203, 2015.
[28] A. Rockett and R. W. Birkmire, "CuInSe2 for photovoltaic applications," Journal of Applied Physics, vol. 70, no. 7, p. 81, 1991.
[29] H. Neumann, "Optical properties and electronic band structure of CuInSe2," Solar Cells, vol. 16, p. 317, 1986.
[30] J. L. Gray, R. J. Schwartz, and Y. J. Lee, "Numerical modeling of CuInSe2 and CdTe solar cells," ECE Technical Reports, paper173, 1994.
[31] J. R. Tuttle, D. Albin, R. J. Matson, and R. Noufi, "A comprehensive study on the optical properties of thinfilm CuInSe2 as a function of composition and substrate temperature," Journal of Applied Physics, vol. 66, no. 9, p. 4408, 1989.
[32] A. F. Fray and P. Lloyd, "Electrical and optical properties of thin P-type films prepared by vacuum evaporation from the chalcopyrite CuInSe2," Thin Solid Films, vol. 58, no. 1, p. 29, 1979.
[33] A. Rothwarf, "CuInSe2/Cd(Zn)S solar cell modeling and analysis," Solar Cells, vol. 16, p. 567, 1986.
[34]P. Lange, H. Neff, M. Fearheiley, K. J. Bachmann, "Photoluminescence and photoconductivity of CuInse2," Physica Review, vol. 31, no. 6, p. 4074, 1985.
[35]H. Neumann, R. D. Tomlinson, "Relation between electrical properks and composition in CuInSe2 single crystals," Solar Cells, vol. 28, no. 4, p. 301, 1990.
[36]M. Tanda, S. Manaka, J. R. E. Marin, K. Kushiya, H. Sano, A. Yamada, M. Konagai, K. Takahashi, "Photoluminescence study of CuInSe2 thin films prepared by the selenization technique," in proc. 22nd IEEE Photovoltaic Specialists Conference, Las Vegas, Nevada, USA, p. 1169, 1991.
[37]B. Vermang, V. Fjällström, J. Pettersson, P. Salomé and M. Edoff, "Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contacts," Solar Energy Materials and Solar Cells, vol. 117, p. 505.
[38]W. W. Hsu, J. Y. Chen, T. H. Cheng, S. C. Lu, W. S. Ho, Y. Y. Chen, Y. J. Chien and C. W. Liu, "Surface passivation of Cu(In,Ga)Se2 using atomic layer deposited Al2O3," Applied Physics Letters, vol. 100, no. 2, p. 023508, 2012.
[39]T. Irie, S. Endo and S. Kimura, "Electrical properties of p- and n-Type CuInSe2, " Japanese Journal of Applied Physics, vol. 18, no. 7, p. 1303, 1979.
[40]S. Niki, P. J. Fons, A. Yamada, T. Kurafuji, S. Chichibu, H. Nakanishi, W. G. Bi and C. W. Tu, "High quality CuInSe2 films grown on pseudolatticematched substrates by molecular beam epitaxy, " Applied Physics Letters, vol. 69, no. 5, p. 647, 1996.
[41]A. Yoshida, N. Tanahashi, T. Tanaka and Y. Demizu, Y. Yamamoto, T. Yamaguchi, " Preparation of CuInSe2 thin films with large grain by excimer laser ablation," Solar Energy Materials and Solar Cells, vol. 50, p. 7, 1998.
[42]A. N. Y. Samaan, R. Vaidhyanathan and R. Noufi, "Growth and characterization of polycrystalline CuInSe2 thin films," Solar Cells, vol. 16, p. 81, 1986.
[43]R. D. L. Kristensen, S.N. Sahu and D. Haneman, " Flash evaporation of CulnSe2 films," Solar Energy Materials, vol. 17, p. 329, 1988.
[44]C. Goradia and M. Ghalla-Goradia, "Theory of high efficiency (Cd,Zn)S/CuInSe2 thin film solar cells," Solar Cells, vol. 16, p. 611, 1986.
[45]S. Agilana, D. Mangalaraj, Sa. K. Narayandass and G. Mohan Rao, "Effect of thickness and substrate temperature on structure and optical band gap of hot wall-deposited CuInSe2 polycrystalline thin films," Physica B:Condensed Matter, vol. 365, p. 93, 2005.
[46]N. Kavcar, "Study of the sub-bandgap absorption and the optical transitions in CuInSe2 polycrystalline thin flms," Solar Energy Materials and Solar Cells, vol. 52, p. 183, 1998.
[47]M. Varela, E. Bertran, M. Manchon, J. Esteve and J. L. Morenza, "Optical properties of co-evaporated CuInSe2 thin films," Journal of Physics D: Applied Physics, vol. 19, no. 1, p. 127, 1986.
[48]K. K. Chattopadhy, Y. I. Sanyal, S. K. Bhattachar, S. Chaudhuri and A. K. Pal, "Optical properties of CuInSe2 films near the fundamental absorption edge," Physica status solid (a), vol. 125, no. 2, p. 707, 1991.
[49]K. Puech, S. Zott, K. Leo, M. Ruckh and H.W. Schock, "Determination of minority carrier lifetimes in CuInSe2 thin films," Applied Physics Letters, vol. 69, p. 3375, 1996.
[50]M. Varela, J. L. Morenza, J. Esteve and J. M. Codina, "Electrical conductivity of polycrystalline CuInSe2 thin films," Journal of Physics D: Applied Physics, vol. 17, p. 2423, 1984.
[51]M. V. Garcia-cuenca, M. Manchon, M. Varela, A. Lousa and J. L. Morenza, "Electrical transport prorperties of polycrystalline CuInSe2 film," Solar Energy Materials, vol. 17, p. 347, 1988.
[52]M. Schaper, J. Schmidt, H. Plagwitz and R. Brendel, "20.1%-efficient crystalline silicon solar cell with amorphous silicon rear-surface passivation," Progress in Photovoltaics: Research and Applications, vol. 13, no. 5, p. 381, 2005.
[53]H. P. Zhou, D. Y. Wei, S. Xu, S. Q. Xiao, L. X. Xu, S. Y. Huang, Y. N. Guo, S. Khan and M. Xu, "Crystalline silicon surface passivation by intrinsic silicon thin films deposited by low-frequency inductively coupled plasma," Journal of Applied Physics, vol. 112, no. 1, p. 013708, 2012.
[54]A. Morales-Acevedo, N. Hernández-Como, G. Casados-Cruz, "Modeling solar cells: A method for improving their efficiency, "Materials Science and Engineering B, vol. 177, no. 16, p. 1430, 2012.
[55]C. H. Wu, C. A. Hsu and C. C. Yang, "Amorphous Ge passivation effects on Ge solar cells," IEEE Journal of Photovoltaics, vol. 4, no. 3, p. 968, 2014.
[56]N. E. Posthuma, G. Flamand, W. Geens and J. Poortmans, "Surface passivation for germanium photovoltaic cells," Solar Energy Material Solar Cells, vol. 88, p. 37, 2005.
[57]T. D. Moustakast and W. Paul, "Transport and recombination in sputtered hydrogenated amorphoua germann," Physical Review B, vol. 16, no. 4, p. 1564, 1997.
[58]A. H. Clark, "Electrical and optical properties of amorphous Germanium," Physical Review, vol. 154, no.3, p. 750, 1967.
[59]N. Balasundaram, D. Mangalaraj, Sa. K. Narayandass, C. Balasubramanian, "Structure, dielectric, and AC conduction properties of amorphous Germanium thin films," Physica status solid (a), vol. 130, no. 1, p. 141, 1992.
[60]J. Tauc, R. Grigorovici and A. Vancu, " Optical properties and electronic structure of amorphous Germanium," Physica status solid (b), vol. 15, no. 2, p. 627, 1966.
[61]P. Liu, P. Longo, A. ZaslaV-sky and D. Pacifici, "Optical bandgap of single- and multi-layered amorphous germanium ultra-thin films," Journal of Applied Physics, vol. 119, p. 014304, 2016.
[62]S. T. Chang, M. Tang, R.Y. He, W. C. Wang, Z. Pei, C. Y. Kung, " TCAD simulation of hydrogenated amorphous silicon-carbon/ microcrystalline-silicon/ hydrogenated amorphous silicon-germanium PIN solar cells," Thin Solid Films, vol. 518 p. S250, 2010.
[63]T. M. Donovan and W. E. Spicer, " Optical properties of amorphous Germanium Films," Physical Review B, vol. 2, no. 2, p. 397, 1970.
[64]J. Wales, G. J. Lovitt and R. A. Hill, " Optical properties of germanium films in the 1–5 μ range," Thin Solid Films, vol. 1, no. 2, p. 137, 1967.
[65]G. W. Mudd, S. A. Svatek, T. Ren, A. Patanè, O. MakaroV-sky, L. Eaves, P. H. Beton, Z. D. Kovalyuk, G. V. Lashkarev, Z. R. Kudrynskyi and A. I. Dmitriev, "Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement," Advanced Materials, vol. 25, no. 40, p. 5714, 2013.
[66]G. W. Mudd, M. R. Molas, X. Chen, V. Zólyomi, K. Nogajewski, Z. R. Kudrynskyi, Z. D. Kovalyuk, G. Yusa, O. MakaroV-sky, L. Eaves, M. Potemski, V. I. Fal’ko and A. Patanè1, " The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals," Scientific Reports, vol. 6, Article number: 39619, 2016.
[67]O. Lang and C. Pettenkofer, " Thin film growth and band lineup of In2O3 on the layered semiconductor InSe," Journal of Applied Physics, vol. 86, no. 10, p. 5687, 1999.
[68]S. Shigetomia, " Electrical and optical properties of n- and p-InSe doped with Sn and As," Journal of Applied Physics, vol. 93, no. 4, p. 2301, 2003.
[69]J. Martfnez-Pastor, A. Segura and J. L. Valdes, " Electrical and photovoltaic properties of indium-tin-oxide/p-lnSe/Au solar cells," Journal of Applied Physics, vol. 62, no.4, p. 1477, 1987.
[70]Ch. Ferrer-Roca, A. Segura, M. V. Andre´s, J. Pellicer and V. Munoz, "Investigation of nitrogen-related acceptor centers in indium selenide by means of photoluminescence: Determination of the hole effective mass," Physical Review B, vol. 55, no. 11, p. 6981, 1997.
[71]E. Kress-Rogers, R. J. Nicholas, J. C. Portal and A. Chevy, "Cyclotron resonance studies on bulk and two-dimensional conduction electrons in InSe," Solid State Communications, vol. 44, no. 3, p. 379, 1982.
[72]B. Čelustka, A. Peršin and D. Bidjin, " Refractive index of thin monocrystal films of InSe," Journal of Applied Physics, vol. 41, no. 2, p. 813, 1970.
[73]M. Brotons-Gisbert, J. F. Sánchez-Royo, J. P. Martínez-Pastor, "Thickness identification of atomically thin InSe nanoflakes on SiO2/Si substrates by optical contrast analysis," Applied Surface Science, vol. 354, p. 453, 2015.
[74]A. Segura, J. P. Guesdon, J. M. Besson and A. Chevy, "Photoconductivity and photovoltaic effect in indium selenide," Journal of Applied Physics, vol. 54, no. 2, p. 876, 1983.
[75]A. F. Qasrawi, I. Gunal and C. Ercelebi, "Structural and electrical properties of Cd doped InSe thin films," Crystal Research and Technology, vol. 35, no. 9, p. 1077, 2000.
[76]S. Shigetomi, Y. Koga, S. Shigetomi and T. Ikari, "Electrical properties of Cd-doped p-InSe," Physica status solid (a), vol. 180, no. 1, p. K53, 1988.
[77]A. F. Qasrawi, T. S. Kayed and K. A. Elsayed, "Properties of Se/InSe Thin-Film Interface," Journal of Electronic Materials, vol. 45, no. 6, p. 2763, 2016.
[78]C. H. Ho, "Thickness-dependent carrier transport and optically enhanced transconductance gain in III-VI multilayer InSe," 2D Materials, vol. 3, no. 2, p. 025019, 2016