(3.235.11.178) 您好!臺灣時間:2021/03/05 15:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王柏勛
研究生(外文):Bo-Xun Wang
論文名稱:複合型阻燃劑對水性聚氨酯阻燃性質的影響
論文名稱(外文):Effect of Multiple Flame Retardants on the Flame Retardancy of Waterborne Polyurethanes
指導教授:許子建許子建引用關係
指導教授(外文):Tzu-Chien Hsu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:80
中文關鍵詞:阻燃劑蒙脫土阻燃性質水性聚氨酯三聚氰胺
外文關鍵詞:flame retardantwaterborne polyurethanemontmorillonite claymelamineflame retardancy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:78
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要為探討水性聚氨酯的阻燃性質,而阻燃性質的優劣則被阻燃劑及水性聚氨酯兩個主體所共同影響。
第一部分為改良阻燃劑,也就是所謂的複合型阻燃劑,藉由不同阻燃劑的配合,不同阻燃機制的交互作用,達到使用更少的添加量,以影響水性聚氨酯阻燃性質。第二部分為水性聚氨酯,探討在水性聚氨酯合成過程中加入阻燃劑,了解在三個時間點下,是否會影響阻燃劑對水性聚氨酯阻燃性質的影響。
第一部分選用三聚氰胺為氮系阻燃劑、鈉-蒙脫土為黏土阻燃劑,X光繞射分析顯示其(001)繞射峰出現左移及消失,表示三聚氰胺陽離子及三聚氰胺甲醛樹脂有進入蒙脫土層狀結構中。將複合型阻燃劑三聚氰胺黏土加入水性聚氨酯中,將樣品燃燒後灰燼經由X光繞射分析顯示(001)繞射峰有左移並強度弱化,顯示三聚氰胺燃燒後揮發氣體能進一步撐開蒙脫土層狀結構。由UL-94及LOI分析,複合型阻燃劑三聚氰胺黏土及三聚氰胺甲醛黏土對水性聚氨酯無阻燃效果。
第二部分為將三聚氰胺及cetyltrimethylammonium bromide (CTMAB)有機改質的蒙脫土在三個時間點下添加入水性聚氨酯合成製程中。在三個時間點下加入三聚氰胺,在小分子時將三聚氰胺加入WPU的樣品,UL-94顯示添加5 wt%可達到V-0等級且沒有低垂現象,LOI顯示添加10 wt%數值由22提升至28,顯示在小分子時,添加三聚氰胺能提高WPU薄膜的阻燃性質且由SEM分析在小分子時加入三聚氰胺的顆粒尺寸較均一,分散性也較佳,由CTMAB改質的蒙脫土,由X光繞射分析其(001)繞射峰出現左移,代表已撐開層間距離並成功製備有機黏土。UL-94分析顯示添加5 wt%有機黏土,三個時間點所製成的樣品皆為V-2等級,但由LOI值顯示在預聚物時加入時最佳,數值由22提升至25。
In this study, flame retardants and waterborne polyurethane is divided into two categories to influence the flame retardancy of the waterborne polyurethane .
(1) Multiple flame retardants was used the combination of different flame
retardants to influence the flame retardancy of the waterborne polyurethane.
(2) In waterborne polyurethane synthesis process. Flame Retardants was added to waterborne polyurethane in three different timing. Flame Retardants in three different timing whether influence the flame retardancy of the waterborne polyurethane or not.
Melamine and Na+-montmorillonite were used as nitrogen and clay retardants.
The melamine was protonated by Phosphoric acid and the melamine synthesis with formaldehyde to form the melamine-formaldehyde resin. Two intercalation agents intercalated within montmorillonite clay layer structure.
X-ray diffraction (XRD) indicated that the melamine cations and melamine-formaldehyde resin were intercalated within the Na+-montmorillonite interlayers. The WPU/multiple flame retardants melamine clay was burned and X-ray diffraction (XRD) indicated that melamine was burned to produce gas. Gas swelled the montmorillonite clay interlayer structure and increased contact area of clay and waterborne polyurethane. UL-94 and LOI flammability test indicated that multiple flame retardants melamine clay and melamine formaldehyde clay cannot improve the flame retardancy of the waterborne polyurethane.
Melamine was added to waterborne polyurethane in the three different timing. In the monomer timing, UL-94 flammability test indicated that 5 wt% melamine was added to waterborne polyurethane, UL-94 level was V-0 and did not have melt dripping. LOI flammability test indicated that 10 wt% melamine was added to waterborne polyurethane, LOI value was increased 22 to 28. In the monomer timing, Melamine can enhance the flame retardancy of the waterborne polyurethane. SEM indicated that melamine were well dispersed with WPU and melamine particle size were single in the monomer timing. The organic clay modified by the surfactants such as cetyltrimethylammonium bromide (CTMAB) was prepared by ion exchange with the nano-sized Na+-montmorillonite. X-ray diffraction (XRD) indicated that the surfactants were intercalated within the Na+-montmorillonite interlayers. UL-94 flammability test indicated that 5 wt% organic clay was added to waterborne polyurethane, UL-94 level was V-2 in the three different timing. But LOI flammability test indicated that best LOI value was increased 22 to 25 in the prepolymer timing.
誌謝 iii
摘要 iv
目錄 vii
圖目錄 x
表目錄 xii
第一章 前言 1
1.1 研究背景 1
1.2 研究動機 2
第二章 原理與文獻回顧 4
2.1 水性聚氨酯簡介 4
2.2 水性聚氨酯基本結構 4
2.3 水性聚氨酯的阻燃形式 6
2.3.1 反應型阻燃劑 6
2.3.2 添加型阻燃劑 11
2.4阻燃機制 12
2.5 阻燃劑的種類 13
2.5.1 氮系阻燃劑 13
2.5.2 磷系阻燃劑 14
2.5.3 黏土阻燃劑 14
2.6 蒙脫土(montmorillonite, MMT)的結構 15
2.6.1 插層機制 16
2.6.2 黏土插層劑 16
2.6.3 蒙脫土在高分子的分散形態 17
2.7 阻燃性質測試方法 19
2.7.1 UL-94垂直燃燒測試 19
2.7.2極限氧指數(Limiting Oxygen Index,LOI) 21
第三章 實驗方法 23
3.1 實驗藥品 23
3.2 黏土阻燃劑的改質與插層 26
3.2.1 四級胺鹽有機改質黏土 26
3.2.2 三聚氰胺鹽插層蒙脫土 27
3.2.3 三聚氰胺甲醛樹脂插層黏土 28
3.3 黏土阻燃劑儀器分析 29
3.3.1 X光繞射儀(X-ray Diffractometer,XRD ) 29
3.4水性聚氨酯之合成 30
3.5不同時間點之阻燃劑混摻水性聚氨酯合成過程 31
3.6 複合型阻燃劑與水性聚氨酯混摻成膜 32
3.7 阻燃水性聚氨酯薄膜的燃燒性質測試 32
3.7.1 UL-94垂直燃燒測試 32
3.7.2極限氧指數(Limiting Oxygen Index, LOI) 33
3.8阻燃WPU薄膜的微觀結構分析 33
3.9 阻燃WPU薄膜的機械性質測試 33
3.10 樣品代號 34
第四章 結果與討論 36
4.1黏土阻燃劑的儀器分析 36
4.1.1 四級胺鹽有機改質黏土X光繞射分析 36
4.1.2三聚氰胺鹽插層黏土X光繞射分析 38
4.1.3三聚氰胺甲醛樹脂插層黏土X光繞射分析 39
4.2 阻燃WPU薄膜的燃燒測試 40
4.2.1 WPU/三聚氰胺黏土的UL-94垂直燃燒測試 40
4.2.2 WPU/三聚氰胺黏土的LOI燃燒測試 41
4.2.3 WPU/三聚氰胺甲醛黏土的UL-94垂直燃燒測試 41
4.2.4 WPU/三聚氰胺甲醛黏土的LOI燃燒測試 42
4.2.5不同混摻時間點之WPU/阻燃劑的UL-94垂直燃燒測試 43
4.2.6不同混摻時間點之WPU/阻燃劑的LOI燃燒測試 43
4.3 阻燃WPU薄膜的儀器分析 46
4.3.1 WPU/三聚氰胺黏土的燃燒前後X光繞射分析 46
4.3.2 WPU/三聚氰胺黏土的SEM電子顯微鏡分析 47
4.3.3 WPU/三聚氰胺甲醛黏土的SEM電子顯微鏡分析 49
4.3.4不同混摻時間點之WPU/阻燃劑的SEM電子顯微鏡分析 51
4.4 阻燃WPU薄膜的機械性質 54
4.4.1 WPU/三聚氰胺黏土的機械性質 54
4.4.2不同混摻時間點之WPU/阻燃劑的機械性質 55
4.5 綜合討論 56
第五章 結論 58
第六章 建議未來工作 62
第七章 參考文獻 63
[1] I. Watanabe, and S. Sakai, "Environmental release and behavior of
brominated flame retardants," Environment International, vol. 29, pp. 665-
682, 2003.
[2] D.K. Chattopadhyay, and D. C.Webster, "Thermal stability and flame
retardancy of polyurethanes," Progress in Polymer Science, vol. 34, pp.
1068-1133, 2009.
[3] Y. Hu, X. Wang, and J. Li, "Regulating effect of exfoliated clay
on intumescent char structure and flame retardancy of polypropylene
composites," Industrial and Engineering Chemistry Research, vol. 55, pp. 5892-5901, 2016.
[4] G. Wu, J. Li, and Y. Luo, "Flame retardancy and thermal
degradation mechanism of a novel post-chain extension flame retardant waterborne polyurethane," Polymer Degradation and Stability, vol. 123, pp. 36-46,2016
[5] T. Z. Wang, and K. N. Chen, "Introduction of covalently bonded phosphorus
into aqueous-based polyurethane system via postcuring reaction," Journal of
Applied Polymer Science, vol. 74, pp. 2499-2509, 1999.
[6] W.K. Huang, K.N Chen, J.T Yeh, and K.J Chen, "Flame retardation
improvement of aqueous-based polyurethane with aziridinyl phosphazene
curing system," Journal of Applied Polymer Science, vol. 79, pp. 662-673, 2000.
[7] C. H. Shao, J. J. Huang, G. N. Chen, J. T. Yeh, and K. N. Chen, "Thermal and
combustion behaviors of aqueous-based polyurethane system with phosphorus
and nitrogen containing curing agent," Polymer Degradation and Stability, vol.
65, pp. 359-371, 1999.
[8] J.X. Ni, L. Song, Y.A. Hu, P. Zhang, and W. Y. Xing, "Preparation and
characterization of microencapsulated ammonium polyphosphate with
polyurethane shell by in situ polymerization and its flame retardance in
polyurethane," Polymers for Advanced Technologies, vol. 20, pp. 999-1005,
2009.
[9] S. H. Chiu, and W. K. Wang, "Dynamic flame retardancy of polypropylene
filled with ammonium polyphosphate, pentaerythritol and melamine additives,"
Polymer, vol. 39, pp. 1951-1955, 1998.
[10] Z. Z. Wang, K. Wu, and Y. Hu, "Study on Flame Retardance of
Co-Microencapsulated Ammonium Polyphosphate and Dipentaerythritol in Polypropylene," Polymer Engineering and Science, vol. 48, pp. 2426-2431, 2008.
[11] M. Thirumal, D. Khastgir, G. B. Nando, Y. P. Naik, and N. K. Singha, "Halogen-free flame retardant PUF: Effect of melamine compounds on mechanical, thermal and flame retardant properties," Polymer Degradation and Stability, vol. 95, pp. 1138-1145, 2010.
[12] B. V. Lotsch, and W. Schnick, "New light on an old story: Formation of melam during thermal condensation of melamine," Chemistry-a European Journal, vol. 13, pp. 4956-4968, 2007.
[13] P. Gijsman, R. Steenbakkers, C. Furst, and J. Kersjes, "Differences in the
flame retardant mechanism of melamine cyanurate in polyamide 6 and
polyamide 66," Polymer Degradation and Stability, vol. 78, pp. 219-224, 2002.
[14] A. I. Balabanovich, and J. Engelmann, "Fire retardant and charring effect of poly(sulfonyldiphenylene phenylphosphonate) in poly(butylene terephthalate)," Polymer Degradation and Stability, vol. 79, pp. 85-92, 2003.
[15] Y. J. Chung, Y. Kim, and S. Kim, "Flame retardant properties of polyurethane produced by the addition of phosphorous containing polyurethane oligomers (II)," Journal of Industrial and Engineering Chemistry, vol. 15, pp. 888-893, 2009.
[16] G. Chigwada, P. Jash, D. D. Jiang, and C. A. Wilkie, "Fire retardancy of vinyl
ester nanocomposites: Synergy with phosphorus-based fire retardants,"
Polymer Degradation and Stability, vol. 89, pp. 85-100, 2005.
[17] P. Lv, Z. Z. Wang, K. L. Hu, and W. C. Fan, "Flammability and thermal
degradation of flame retarded polypropylene composites containing melamine
phosphate and pentaerythritol derivatives," Polymer Degradation and Stability, vol. 90, pp. 523-534, 2005.
[18] R. J. Jeng, S. M. Shau, J. J. Lin, W. C. Su, and Y. S. Chiu, "Flame retardant
epoxy polymers based on all phosphorus-containing components," European
Polymer Journal, vol. 38, pp. 683-693, 2002.
[19] J. X. Ni, L. J. Chen, K. M. Zhao, Y. Hu, and L. Song, "Preparation of
gel-silica/ammonium polyphosphate core-shell flame retardant and properties
of polyurethane composites," Polymers for Advanced Technologies, vol. 22,
pp. 1824-1831, 2011.
[20] S. Zhou, H. D. Lu, L. Song, Z. Z. Wang, Y. Hu, and J. X. Ni, et al.
" Microencapsulated Ammonium Polyphosphate with Polyurethane Shell: Application to Flame Retarded Polypropylene/Ethylene-propylene Diene Terpolymer Blends," Journal of Macromolecular Science Part a-Pure and Applied Chemistry, vol. 46, pp. 136-144, 2009.
[21] C. Nguyen, and J. Kim, "Thermal stabilities and flame retardancies of nitrogen-phosphorus flame retardants based on bisphosphoramidates," Polymer Degradation and Stability, vol. 93, pp. 1037-1043, 2008.
[22] A. Okada, M. Kawasumi, T. Kurauchi, and O. Kamigaito, "Synthesis and Characterization of a Nylon 6-Clay Hybrid," Abstracts of Papers of the American Chemical Society, vol. 194, pp. 10-Macr, 1987.
[23] K. Fang, J. Li, C. Ke, Q. Zhu, K. Tao, Jin Zhu, and Qing Yan, "Intumescent Flame Retardation of Melamine-Modified Montmorillonite on Polyamide 6: Enhancement of Condense Phase and Flame Retardance," Polymer Engineering and Science, vol. 51, pp. 377–385, 2010.
[24] S. Oyama, K. Tamura, T. Kitazawa, K. Minagawa, and A. Yamagishi,
"Preparation of Exfoliated Melamine Modified Mica/Polyamide-6
Nanocomposite and Its Properties," Advances in Science and Technology,
vol. 92, pp. 133-137, 2014.
[25] Y. Hu, X. Wang, and J. Li, "Regulating Effect of Exfoliated Clay on Intumescent Char Structure and Flame Retardancy of Polypropylene Composites," American Chemical Society, vol.55, pp. 5892–5901, 2016.
電子全文 電子全文(網際網路公開日期:20220628)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔