[1]Shaw, J., Future Steel Vehicle Overview Report, World Auto Steel, (2011)
[2]Seo,E. J., Cho, L., & De Cooman, B. C., Application of quenching and partitioning processing to medium Mn steel, Metallurgical and Materials Transactions A 46.1 (2015) 27-31.
[3]徐銘鍾,錳矽鋼材的機械性質與顯微組織的研究,碩士論文,國立中山大學材料與光電科學學系研究所,(2014)。[4]Matlock, D. K., & Speer, J. G., Processing opportunities for new advanced high-strength sheet steels, Materials and Manufacturing Processes 25.1-3 (2010) 7-13.
[5]Kalashami, A. G., Kermanpur, A., Ghassemali, E., Najafizadeh, A., & Mazaheri, Y., Correlation of microstructure and strain hardening behavior in the ultrafine-grained Nb-bearing dual phase steels, Materials Science and Engineering A 678 (2016) 215-226.
[6]Gutierrez-Urrutia, I., Zaefferer, S., & Raabe, D., The effect of grain size and grain orientation on deformation twinning in a Fe–22wt.% Mn–0.6 wt.% C TWIP steel. Materials Science and Engineering: A, 527.15 (2010) 3552-3560.
[7]Lee, S. J., & Lee, Y. K., Quantitative analyses of ferrite lattice parameter and solute Nb content in low carbon microalloyed steels, Scripta materialia 52.10 (2005) 973-976.
[8]Callister, W. D., & David, G. R., Materials science and engineering 5, NY, John Wiley & Sons, (2011).
[9]Li, S., Zhu, R., Karaman, I., & Arróyave, R., Development of a kinetic model for bainitic isothermal transformation in transformation-induced plasticity steels, Acta Materialia 61.8 (2013) 2884-2894.
[10]Bhadeshia, H. K. D. H., Thermodynamic analysis of isothermal transformation diagrams. Metal Science, 16(3)(1982) 159-166.
[11]Bhadeshia, H. K. D. H., Geometry of crystals, Institute of Materials, London (2001).
[12]Tamura, I., Deformation-induced martensitic transformation and transformation-induced plasticity in steels, Metal Science 16.5 (1982) 245-253.
[13]Koistinen, D. P., & Marburger, R. E. , A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, acta metallurgica 7.1 (1959) 59-60.
[14]Lee, S. J., & Park, K. S., Prediction of martensite start temperature in alloy steels with different grain sizes, Metallurgical and Materials Transactions A 44.8 (2013) 3423-3427.
[15]Kang, S., Yoon, S., & Lee, S. J. , Prediction of Bainite Start Temperature in Alloy Steels with Different Grain Sizes, ISIJ international 54.4 (2014) 997-999.
[16]Sakuma, Y., Matsumura, O., & Akisue, O. , Influence of C content and annealing temperature on microstructure and mechanical properties of 400 C transformed steel containing retained austenite, ISIJ international 31.11 (1991) 1348-1353.
[17]Tsukatani, I., Hashimoto, S. I., & Inoue, T., Effects of silicon and manganese addition on mechanical properties of high-strength hot-rolled sheet steel containing retained austenite, ISIJ International 31.9 (1991) 992-1000.
[18]Das, A., Chakraborti, P. C., Tarafder, S., & Bhadeshia, H. K. D. H., Analysis of deformation induced martensitic transformation in stainless steels, Materials Science and technology 27.1 (2011) 366-370.
[19]Samek, L., De Moor, E., Penning, J., & De Cooman, B. C. , Influence of alloying elements on the kinetics of strain-induced martensitic nucleation in low-alloy, multiphase high-strength steels, Metallurgical and Materials Transactions A 37.1 (2006) 109-124.
[20]Kuziak, R., Kawalla, R., & Waengler, S. , Advanced high strength steels for automotive industry, Archives of civil and mechanical engineering 8.2 (2008) 103-117.
[21]Bouquerel, J., Verbeken, K., & De Cooman, B. C. , Microstructure-based model for the static mechanical behaviour of multiphase steels, Acta Materialia 54.6 (2006): 1443-1456.
[22]Chiang, J., Lawrence, B., Boyd, J. D., & Pilkey, A. K., Effect of microstructure on retained austenite stability and work hardening of TRIP steels, Materials Science and Engineering: A 528.13 (2011): 4516-4521.
[23]王涵聖,沃斯田鐵在不銹鋼及合金鋼之Displactive相變態與其衍生之顯微組織研究,博士論文,國立台灣大學材料科學與工程學研究所,(2005)[24]Itami, A., Takahashi, M., & Ushioda, K. , Plastic stability of retained austenite in the cold-rolled 0.14% C-1.9% Si-1.7% Mn sheet steel, ISIJ international 35.9 (1995) 1121-1127.
[25]Speer, J., Matlock, D. K., De Cooman, B. C., & Schroth, J. G., Carbon partitioning into austenite after martensite transformation, Acta materialia 51.9 (2003) 2611-2622.
[26]Hillert, M., & Ågren, J., On the definitions of paraequilibrium and orthoequilibrium, Scripta Materialia 50 (2004) 697–699
[27]朱帥、康永林、鄺霜、姜英花,淬火-貝氏體區配分工藝及鋼的組織性能,Iron&Steel 49 (2014) 69-73。
[28]Seo, E. J., Cho, L., & De Cooman, B. C. , Application of quenching and partitioning processing to medium Mn steel, Metallurgical and Materials Transactions A 46.1 (2015) 27-31.
[29]丁三益,熱處理對冷軋錳矽鋁鋼機械性質的研究,碩士論文,高雄,國立中山大學材料與光電科學學系研究所,(2016)[30]Hansen, N., Hall–Petch relation and boundary strengthening, Scripta Materialia 51.8 (2004) 801-806.
[31]Patterson A. L., The Scherrer formula for X-ray particle size determination, Physical review 56.10 (1939): 978.
[32]謝克昌,未發表數據。
[33]Hüper, T., Endo, S., Ishikawa, N., & Osawa, K., Effect of volume fraction of constituent phases on the stress-strain relationship of dual phase steels, ISIJ international 39.3 (1999) 288-294.
[34]Grässel, O., Frommeyer, G., Derder, C., & Hofmann, H., Phase transformations and mechanical properties of Fe-Mn-Si-Al TRIP-steels, Le Journal de Physique IV 7.C5 (1997) 383.
[35]Timokhina, I. B., Pereloma, E. V., & Hodgson, P. D. , Microstructure and mechanical properties of C–Si–Mn (–Nb) TRIP steels after simulated thermomechanical processing, Materials science and technology 17.2 (2001) 135-140.
[36]Lee, C. G., Kim, S. J., Oh, C. S., & Lee, S., Effects of heat treatment and Si addition on the mechanical properties of 0.1 wt% C TRIP-aided cold-rolled steels, ISIJ international 42.10 (2002) 1162-1168.
[37]Misra, A., Sharma, S., Sangal, S., Upadhyaya, A., & Mondal, K., Critical isothermal temperature and optimum mechanical behaviour of high Si-containing bainitic steels, Materials Science and Engineering: A 558 (2012) 725-729.
[38]Aydin, H., Essadiqi, E., Jung, I. H., & Yue, S., Development of 3rd generation AHSS with medium Mn content alloying compositions, Materials Science and Engineering A 564 (2013) 501-508.
[39]Li, Q., Huang, X., & Huang, W., Microstructure and mechanical properties of a medium-carbon bainitic steel by a novel quenching and dynamic partitioning (Q-DP) process, Materials Science and Engineering A 662 (2016) 129-135.
[40]Guo, H., Gao, G., Gui, X., Misra, R. D. K., & Bai, B., Structure-property relation in a quenched-partitioned low alloy steel involving bainite transformation, Materials Science and Engineering A 667 (2016) 224-231.
[41]Sanders, P. G., Eastman, J. A., & Weertman, J. R. (1997). Elastic and tensile behavior of nanocrystalline copper and palladium. Acta materialia, 45(10), 4019-4025.