跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 13:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃姵瑜
研究生(外文):Pei-Yu Huang
論文名稱:電鍍參數與基板對氧化亞銅電鍍磊晶成長的研究
論文名稱(外文):Effects of electrolytical parameters and substrate on epitaxial growth of Cu2O on electrodeposition
指導教授:張六文
指導教授(外文):Liu-Wen Chang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:173
中文關鍵詞:銀基板背向散射電子繞射銅基板電鍍氧化亞銅磊晶成長
外文關鍵詞:copper substrateelectrodepositioncuprous oxideelectron back scatter diffractionsilver substrateepitaxial growth
相關次數:
  • 被引用被引用:5
  • 點閱點閱:803
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以定電流製程製備氧化亞銅薄膜,並選用多晶銀、多晶銅、單晶銅為基板,探討電鍍參數(溫度、鍍液pH值、電流密度)對氧化亞銅磊晶成長的影響。磊晶成長的分析,是以離位(ex-situ) 方法,於電鍍前以掃描式電子顯微鏡和電子背向散射繞射儀分析基板的結晶方位分布,再於電鍍後分析原位置上電鍍氧化亞銅薄膜的結晶方位分布,藉以探討在不同結晶方向的基板晶粒上氧化亞銅的成長行為。此外,以X光繞射儀確認薄膜的結晶相,以穿透式電子顯微鏡分析氧化亞銅鍍層的厚度與顯微組織。最後以反射光譜分析氧化亞銅鍍層的能隙值,以及利用光致螢光光譜分析磊晶的螢光發光特性。
實驗結果顯示,所有參數下電鍍所得的薄膜均為氧化亞銅。在pH值為9,溫度為25 oC時,鍍層係由粒徑細小的球狀顆粒團聚而成,但是在電流密度低至0.0125 mA/cm2時,電鍍的電流效率非常低,導致基板上僅有少量散佈的氧化亞銅顆粒存在。此外,鍍層與基板之間無特定方位關係。在pH值為9,溫度提高至60 oC時,鍍層係由粒徑較粗大且具有明顯晶癖面的八面體形狀顆粒覆蓋而成,在低電流密度下鍍層沉積不均勻。此外,在電流密度較高時,部分基板晶粒上有磊晶成長現象。在pH值為12,溫度為25 oC時,氧化亞銅有兩種形貌,其一是以八面體顆粒依照磊晶關係堆疊而成的薄膜,另一種則是相對平坦的磊晶薄膜。電流密度愈大,平坦的的磊晶薄膜比例愈高,而當電流密度太低時仍有電流效率偏低的問題。在pH值為12,溫度提高至60 oC時,氧化亞銅粒徑增加至300-2000 nm。當電流密度為0.2500 mA/cm2時,只有在(100)的基板晶粒上可以成長出平坦的氧化亞銅磊晶。當電流密度為0.0600或0.1250 mA/cm2時,大多數基板晶粒上均可成長平坦的氧化亞銅磊晶。因此高溫與高pH值較有利於氧化亞銅的磊晶成長。大多數磊晶成長的氧化亞銅與基板間的方位關係為cube-on-cube,但是在電流密度為0.060 mA/cm2或0.1250 mA/cm2時,部分電鍍試片的氧化亞銅與基板間存在兩種方位關係:cube-on-cube和rotate cube(<100>/45°)。
本研究同時於單晶銅(110) 基板沉積氧化亞銅、氧化亞銅以cube-on-cube的方位關係磊晶成長,rocking curve的半高寬為1.4o。電鍍氧化亞銅磊晶的能隙值為2.05 eV,室溫光致螢光光譜分析顯示(100)的磊晶會在1.97 eV處產生明顯的近能隙發光峰。
Cuprous oxide (Cu2O) films were prepared by galvanostatic condition to explore the effect of processing parameters (temperature and pH value of the electroyte and current density) on the epitaxial growth of on metallic substrates. Polycrystalline silver, copper and single crystal copper were used as the substrates. An ex-situ methos was used to analyze the orientation distribution of the substrate grains prior to and after electrodeposition for the same area by electron backscatter diffraction (EBSD). The surface morphology of the deposits was observed by scanning electron microscope, the composing phases of the deposits were identified by X-ray diffractometer, the thickness and microstructure of the deposits were observed by transmission electron microscope (TEM). In addition, optical reflective spectroscpoy and photoluminescence spectroscopy were used to analyze the energy band gap and luminescence characteristics of the deposits.
All the deposits were mainly composed of Cu2O no matter the processing parameters used. For the deposition carried out at pH=9 and 25 oC, the deposited films were composed of fine, spherical particles. The Cu2O particles deposited with no specific orientation relationship with the substrate grains. In addition, the cathode efficiency was extremely low at a low current density of 0.0125 mA/cm¬2. When the films were deposited at pH= 9 and 60 ° C, the films were composed of octahedral particles with coarser sizes. The coating was not uniformly distributed on the substrate at the lowest current density. Furthermore, about half of the Cu2O crystals could grow epitaxially on the substrate grains at higher current densities.
At a high pH of 12 and 25 oC, the films consisted of two morphologies. One is rough, regularly packed cuprous oxide crystals and the other is relatively flat epitaxial film. The larger the current density, the higher was the area fraction of the flat epitaxial film. At pH=12 and 60 °C, the size of the cuprous oxide crystals increased to 300-2000 nm. When the current density was increased to 0.2500 mA/cm2, Cu2O grew epitaxially only on the (100) substrate grains with very flat top surfaces. When the current density was decreased to 0.0600 - 0.1250 mA/cm2, most the substrate grains were covered by flat Cu2O epilayer. Accordingly, high growth temperature and high pH value of the electrolyte are beneficial for epiaxial growth of cuprous oxide. Most of the epilayers exhibit a cube-on-cube orientation relationship with the substrate grains, except that aportion of epilayers grown at the current density of 0.060 mA/cm2 or 0.1250 mA/cm2 follow a rotate-cube (<100> / 45 °) orientation relationship. In this study, cuprous oxide was also deposited on (110) single crystal copper substrate and epilayer with a full width at half maximum of the rocking curve of 1.4 ° was obtained. The energy gap of electroplated film is 2.05 eV. A strong near band emission at 1.97 eV was found in the photoluminescence spectrum of a (100) epilayer analyzed at room temperature.
論文審定書………………………………………………………………………….....i
致謝 …………………………………………………………………………………..ii
摘要 ………………………………………………………………………………….iii
Abstract………………………………………………………………………...…...…v
目錄 ……………………………………………………………………………...….vii
表目錄 ……………………………………………………………………...……...…x
圖目錄 ………………………………………………………………………….........xi
1.前言 1
2.基礎理論和文獻回顧 3
2.1氧化亞銅的基本特性及應用 3
2.2磊晶成核與成長 3
2.2.1同質成核 4
2.2.2異質成核 4
2.2.3異質磊晶成長 4
2.3氧化亞銅的薄膜成長 6
2.3.1氧化亞銅磊晶薄膜 6
2.4電鍍 7
2.4.1電鍍基本原理 7
2.5以電化學製程製備氧化亞銅薄膜與磊晶 8
2.5.1鍍液 8
2.5.2電壓 8
2.5.3 pH值 9
2.5.4 溫度與電流密度 10
2.5.5電鍍沉積的氧化亞銅多晶薄膜 11
2.5.6電鍍沉積的氧化亞銅磊晶薄膜 12
2.6晶體集合組織之分析 13
2.6.1尤拉角(Euler angle) 13
2.6.2反極圖(inverse pole figure) 14
3.研究方法和步驟 15
3.1基板前處理 15
3.2 電鍍製程 15
3.3 X光繞射分析 15
3.4掃描式電子顯微鏡、背向散射電子繞射與能量色散光譜分析 15
3.5光致螢光光譜(Photoluminescence,PL)分析 16
3.6薄膜光學特性 (N&K Analyzer) 分析 16
3.7原子力顯微鏡分析 16
4.實驗結果 17
4.1電解拋光後基板表面分析 17
4.2 X光繞射分析 17
4.3鍍層分析 18
4.3.1電鍍液pH9,溫度25 oC 18
4.3.2電鍍液pH9,溫度60 oC 21
4.3.3電鍍液pH12,溫度25oC 23
4.3.4電鍍液pH12,溫度60 oC 26
5.討論 32
5.1溫度與pH值對氧化亞銅粒徑和形狀的影響 32
5.2電鍍液pH與溫度對氧化亞銅成長方向的影響 33
5.3電流密度對於氧化亞銅鍍層影響 34
5.4基板對氧化亞銅鍍層影響 34
5.5 EBSD分析的訊號深度問題 35
5.6電鍍氧化亞銅鍍層的成長機構 36
6.結論 38
7.文獻參考 40
[1] W. Shockley and H. J. Queisser, Detailed Balance Limit of Efficiency of p-n
Junction Solar Cells, Journal of Applied Physics, 32 (1961) 510-519.
[2] Tadatsugu Minami, Yuki Nishi and Toshihiro Miyata, Heterojunction solar cell
with 6% efficiency based on an n-type aluminum–gallium–oxide thin film and
p-type sodium-doped Cu2O sheet, Applied Physics Express 8 (2015).
[3] M. Izaki, T. Shinagawa, K. T. Mizuno, Y. Ida, M. Inaba and A. Tasaka,
Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device, Journal of Physics D:Applied Physics, 40 (2007) 3326-3329.
[4] T. K. S. Wong, S. Zhuk, S. M. Panah and G. K. Dalapati, Current Status and
Future Prospects of Copper Oxide Heterojunction Solar Cells, Materials, 9 (2016) 271.
[5] F. Oba, F. Ernst, Y. Yu, R. Liu, H. M. Kothari and J. A. Switzer, Epitaxial Growth
of Cuprous Oxide Electrodeposited onto Semiconductor and Metal Substrates, Journal of the American Ceramic Society, 88 (2005) 253-270.
[6] C. Gattinoni and A. Michaelides, Atomistic details of oxide surfaces and surface
oxidation:the example of copper and its oxides, Surface Science Reports, 70 (2015) 424-447.
[7] M. Hansen and K. Anderko, Constitution of Binary alloys, 2nd ed., New York, (1988) 24.
[8] B. K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P. J. Klar, Th. Sander, C. Reind, J. Benz, M. Eickhoff, C. Heiliger, M. Heinemann, J. Bläsing, A. Krost,
S. Shokovets, C. Müller, C. Ronning, Binary copper oxide semiconductors:From materials towards devices, Physica Status Solidi B, 249 (2012) 1487-1509.
[9] F. Biccari, Defects and Doping in Cu2O, Ph.D. thesis, Sapienza-University of
Rome (2009).
[10] X. Zou, G. Fang, L. Yuan, M. Li, W. Guan, X. Zhao, Top-Gate Low-Threshold
Voltage p-Cu2O Thin-Film Transistor Grown on SiO2/Si Substrate Using a High-κ HfON Gate Dielectric, IEEE Electron Device Letters, 31 (2010) 827-829.
[11] S. O. Kang, S. Hong, J. Choi, J. S. Kim, I. Hwang, I. S. Byun, K. S. Yun and
B. H. Park, Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films, Applied Physics Letters, 95 (2009) 092108.
[12] C.Y. Lam, K.H. Wong, Characteristics of heteroepitaxial Cu2-xMnxO/Nb-SrTiO3
p-n junction, Journal of Non-Crystalline Solids, 354 (2008) 4262-4266.
[13] W. D. Callister and D. G. Rethwisch, Materials Science and Engineering, 9th ed, (2015), 387.
[14] K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano and H. Hosono,
Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor, Applied Physics Letters, 93 (2008) 202107.
[15] I. Pallecchi, E. Bellingeri, C. Bernini, L. Pellegrino, A. S. Siri and D. Marré,
Epitaxial copper oxide thin films deposited on cubic oxide substrates, Journal of Physics D:Applied Physics, 41 (2008).
[16] S. H. Wee, P. S. Huang, J. K. Lee and A. Goyal, Heteroepitaxial Cu2O thin film
solar cell on metallic substrates, Scientific Reports, 5 (2015) 16272.
[17] J. Li, Z. Mei, D. Ye, H. Liang, Y. Liu and X. Du, Growth of single-crystalline
Cu2O (111) film on ultrathin MgO modified α-Al2O3 (0001) substrate by molecular beam epitaxy, Journal of Crystal Growth, 353 (2012) 63–67.
[18] M. Krachtn, J. Schörmann and M. Eickhoff, Plasma assisted molecular beam
epitaxy of Cu2O on MgO(001): Influence of copperflux on epitaxial orientation, Journal of Crystal Growth, 436 (2016) 87-91.
[19] M. C. Huang, T. H. Wang, W. S. Chang, J. C. Lin, C. C. Wu, I. C. Chen,
K. C. Peng and S. W. Lee, Temperature dependence on p-Cu2O thin film electrochemically deposited onto copper substrate, Applied Surface Science, 301 (2014) 369-377.
[20] J. Būdienė, A. Survilienė and A. Survila, Cathodic processes in Cu(II) solutions
containing malic acid, Chemija, 18 (2007) 14-17.
[21] R.P. Wijesundera, M. Hidaka, K. Koga, M. Sakai and W. Siripala, Growth and
characterisation of potentiostatically electrodeposited Cu2O and Cu thin films, Thin Solid Films, 500 (2006) 241-246.
[22] S. Bijani, L.Martinez, M. Gabas, E.A. Dalchiele and J. R. Ramos-Barrado, Low
Temperature Electrodeposition of Cu2O Thin Films: Modulation of Micro-
Nanostructure by Modifying the Applied Potential and Electrolytic Bath pH,
Journal of Physical Chemistry C, 113 (2009) 19482-19487.
[23] Y. Zhou and J. A. Switzer, Electrochemical Deposition and Microstructure of
Copper (I) Oxide Films, Scripta Materialia, 38 (1998) 1731-1738.
[24] S. Bijani, R. Schrebler, E. A. Dalchiele, M. Gabas, L. Martinez and
J. R. Ramos-Barrado, Study of the Nucleation and Growth Mechanisms in the Electrodeposition of Micro- and Nanostructured Cu2O Thin Films, Journal of Physical Chemistry C, 115 (2011) 21373-21382.
[25] J. A. Switzer, H. M. Kothari and E. W. Bohannan, Thermodynamic to Kinetic
Transition in Epitaxial Electrodeposition, Journal of Physical Chemistry B, 106 (2002) 4027-4031.
[26] L.C. Wang, N.R. de Tacconi, C.R. Chenthamarakshan, K. Rajeshwar and M. Tao,
Thin Solid Films, 515 (2007) 3090-3095.
[27] J. A. Switzer, C. J. Hung, L. Y. Huang, F. S. Miller, Y. Zhou, E. R. Raub,
M. G. Shumsky and E. W. Bohannan, Potential oscillations during the
electrochemical self-assembly of copper/cuprous oxide layered nanostructures, Journal of Materials Research, 13 (1998) 909-916.
[28] K. Han and M. Tao, Electrochemically deposited p-n homojunction cuprous
oxide solar cells, Solar Energy Materials and Solar Cells, 93 (2009) 153-157.
[29] J. Katayama, K. Ito, M. Matsuoka and J. Tamaki, Performance of Cu2O/ZnO
Solar Cell Prepared By Two-Step Electrodeposition, Journal of Applied Electrochemistry, 34 (2004) 687-692.
[30] W. Zhao, W. Fu, H. Yang, C. Tian, M. Li, Y. Li, L. Zhang, Y. Sui, X. Zhou,
H. Chena and G. Zou, Electrodeposition of Cu2O films and their photoelectrochemical properties, The Royal Society of Chemistry ,13 (2011) 2871-2877.
[31] S.S. Jeong, A. Mittiga, E. Salza, A. Masci and S. Passerini, Electrodeposited
ZnO/Cu2O heterojunction solar cells, Electrochimica Acta, 53 (2008) 2226-2231.
[32] E. W. Bohannan, M. G. Shumsky and J. A. Switzer, Epitaxial Electrodeposition
of Copper(I) Oxide on Single-Crystal Gold(100), Chemistry of Materials, 11 (1999) 2289-2291.
[33] Y. Nishi, T. Miyata and T. Minami, Electrochemically deposited Cu2O thinfilms
on thermally oxidized Cu2O sheets for solar cell applications, Solar Energy Materials and Solar Cells, 155 (2016) 405-410.
[34] V. Randle, O. Engler, Introduction to texture analysis, 1st ed, London, CRC press, (2000).
[35] J. I. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer and J. R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, 3th ed, (2003) 266.
[36] A. J. Bard, R. Parsons and J. Jordan, Standard Potentials in Aqueous Solution, (1985).
[37] W. L. Tsai1, P. C. Hsu1, Y. Hwu1, C. H. Chen, L. W. Chang, J. H. Je, H. M. Lin, A. Groso and G. Margaritondo, Building on bubbles in metal electrodeposition, Nature 417, (2002) 139.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊