|
[1] W. Shockley and H. J. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells, Journal of Applied Physics, 32 (1961) 510-519. [2] Tadatsugu Minami, Yuki Nishi and Toshihiro Miyata, Heterojunction solar cell with 6% efficiency based on an n-type aluminum–gallium–oxide thin film and p-type sodium-doped Cu2O sheet, Applied Physics Express 8 (2015). [3] M. Izaki, T. Shinagawa, K. T. Mizuno, Y. Ida, M. Inaba and A. Tasaka, Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device, Journal of Physics D:Applied Physics, 40 (2007) 3326-3329. [4] T. K. S. Wong, S. Zhuk, S. M. Panah and G. K. Dalapati, Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells, Materials, 9 (2016) 271. [5] F. Oba, F. Ernst, Y. Yu, R. Liu, H. M. Kothari and J. A. Switzer, Epitaxial Growth of Cuprous Oxide Electrodeposited onto Semiconductor and Metal Substrates, Journal of the American Ceramic Society, 88 (2005) 253-270. [6] C. Gattinoni and A. Michaelides, Atomistic details of oxide surfaces and surface oxidation:the example of copper and its oxides, Surface Science Reports, 70 (2015) 424-447. [7] M. Hansen and K. Anderko, Constitution of Binary alloys, 2nd ed., New York, (1988) 24. [8] B. K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P. J. Klar, Th. Sander, C. Reind, J. Benz, M. Eickhoff, C. Heiliger, M. Heinemann, J. Bläsing, A. Krost, S. Shokovets, C. Müller, C. Ronning, Binary copper oxide semiconductors:From materials towards devices, Physica Status Solidi B, 249 (2012) 1487-1509. [9] F. Biccari, Defects and Doping in Cu2O, Ph.D. thesis, Sapienza-University of Rome (2009). [10] X. Zou, G. Fang, L. Yuan, M. Li, W. Guan, X. Zhao, Top-Gate Low-Threshold Voltage p-Cu2O Thin-Film Transistor Grown on SiO2/Si Substrate Using a High-κ HfON Gate Dielectric, IEEE Electron Device Letters, 31 (2010) 827-829. [11] S. O. Kang, S. Hong, J. Choi, J. S. Kim, I. Hwang, I. S. Byun, K. S. Yun and B. H. Park, Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films, Applied Physics Letters, 95 (2009) 092108. [12] C.Y. Lam, K.H. Wong, Characteristics of heteroepitaxial Cu2-xMnxO/Nb-SrTiO3 p-n junction, Journal of Non-Crystalline Solids, 354 (2008) 4262-4266. [13] W. D. Callister and D. G. Rethwisch, Materials Science and Engineering, 9th ed, (2015), 387. [14] K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano and H. Hosono, Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor, Applied Physics Letters, 93 (2008) 202107. [15] I. Pallecchi, E. Bellingeri, C. Bernini, L. Pellegrino, A. S. Siri and D. Marré, Epitaxial copper oxide thin films deposited on cubic oxide substrates, Journal of Physics D:Applied Physics, 41 (2008). [16] S. H. Wee, P. S. Huang, J. K. Lee and A. Goyal, Heteroepitaxial Cu2O thin film solar cell on metallic substrates, Scientific Reports, 5 (2015) 16272. [17] J. Li, Z. Mei, D. Ye, H. Liang, Y. Liu and X. Du, Growth of single-crystalline Cu2O (111) film on ultrathin MgO modified α-Al2O3 (0001) substrate by molecular beam epitaxy, Journal of Crystal Growth, 353 (2012) 63–67. [18] M. Krachtn, J. Schörmann and M. Eickhoff, Plasma assisted molecular beam epitaxy of Cu2O on MgO(001): Influence of copperflux on epitaxial orientation, Journal of Crystal Growth, 436 (2016) 87-91. [19] M. C. Huang, T. H. Wang, W. S. Chang, J. C. Lin, C. C. Wu, I. C. Chen, K. C. Peng and S. W. Lee, Temperature dependence on p-Cu2O thin film electrochemically deposited onto copper substrate, Applied Surface Science, 301 (2014) 369-377. [20] J. Būdienė, A. Survilienė and A. Survila, Cathodic processes in Cu(II) solutions containing malic acid, Chemija, 18 (2007) 14-17. [21] R.P. Wijesundera, M. Hidaka, K. Koga, M. Sakai and W. Siripala, Growth and characterisation of potentiostatically electrodeposited Cu2O and Cu thin films, Thin Solid Films, 500 (2006) 241-246. [22] S. Bijani, L.Martinez, M. Gabas, E.A. Dalchiele and J. R. Ramos-Barrado, Low Temperature Electrodeposition of Cu2O Thin Films: Modulation of Micro- Nanostructure by Modifying the Applied Potential and Electrolytic Bath pH, Journal of Physical Chemistry C, 113 (2009) 19482-19487. [23] Y. Zhou and J. A. Switzer, Electrochemical Deposition and Microstructure of Copper (I) Oxide Films, Scripta Materialia, 38 (1998) 1731-1738. [24] S. Bijani, R. Schrebler, E. A. Dalchiele, M. Gabas, L. Martinez and J. R. Ramos-Barrado, Study of the Nucleation and Growth Mechanisms in the Electrodeposition of Micro- and Nanostructured Cu2O Thin Films, Journal of Physical Chemistry C, 115 (2011) 21373-21382. [25] J. A. Switzer, H. M. Kothari and E. W. Bohannan, Thermodynamic to Kinetic Transition in Epitaxial Electrodeposition, Journal of Physical Chemistry B, 106 (2002) 4027-4031. [26] L.C. Wang, N.R. de Tacconi, C.R. Chenthamarakshan, K. Rajeshwar and M. Tao, Thin Solid Films, 515 (2007) 3090-3095. [27] J. A. Switzer, C. J. Hung, L. Y. Huang, F. S. Miller, Y. Zhou, E. R. Raub, M. G. Shumsky and E. W. Bohannan, Potential oscillations during the electrochemical self-assembly of copper/cuprous oxide layered nanostructures, Journal of Materials Research, 13 (1998) 909-916. [28] K. Han and M. Tao, Electrochemically deposited p-n homojunction cuprous oxide solar cells, Solar Energy Materials and Solar Cells, 93 (2009) 153-157. [29] J. Katayama, K. Ito, M. Matsuoka and J. Tamaki, Performance of Cu2O/ZnO Solar Cell Prepared By Two-Step Electrodeposition, Journal of Applied Electrochemistry, 34 (2004) 687-692. [30] W. Zhao, W. Fu, H. Yang, C. Tian, M. Li, Y. Li, L. Zhang, Y. Sui, X. Zhou, H. Chena and G. Zou, Electrodeposition of Cu2O films and their photoelectrochemical properties, The Royal Society of Chemistry ,13 (2011) 2871-2877. [31] S.S. Jeong, A. Mittiga, E. Salza, A. Masci and S. Passerini, Electrodeposited ZnO/Cu2O heterojunction solar cells, Electrochimica Acta, 53 (2008) 2226-2231. [32] E. W. Bohannan, M. G. Shumsky and J. A. Switzer, Epitaxial Electrodeposition of Copper(I) Oxide on Single-Crystal Gold(100), Chemistry of Materials, 11 (1999) 2289-2291. [33] Y. Nishi, T. Miyata and T. Minami, Electrochemically deposited Cu2O thinfilms on thermally oxidized Cu2O sheets for solar cell applications, Solar Energy Materials and Solar Cells, 155 (2016) 405-410. [34] V. Randle, O. Engler, Introduction to texture analysis, 1st ed, London, CRC press, (2000). [35] J. I. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer and J. R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, 3th ed, (2003) 266. [36] A. J. Bard, R. Parsons and J. Jordan, Standard Potentials in Aqueous Solution, (1985). [37] W. L. Tsai1, P. C. Hsu1, Y. Hwu1, C. H. Chen, L. W. Chang, J. H. Je, H. M. Lin, A. Groso and G. Margaritondo, Building on bubbles in metal electrodeposition, Nature 417, (2002) 139.
|