(44.192.112.123) 您好!臺灣時間:2021/03/01 03:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:紀乃中
研究生(外文):Nai-Chung Ji
論文名稱:銅-銻-硒三元熱電材料之相圖以及銻摻雜之Cu2Se熱電性質
論文名稱(外文):Phase digrams of ternary Cu-Sb-Se system and thermoelectric properties of Sb doped Cu2Se
指導教授:吳欣潔吳欣潔引用關係
指導教授(外文):Hsin-Jay Wu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:192
中文關鍵詞:液相線投影圖等溫恆截面圖熱電材料Cu2Se
外文關鍵詞:Cu2SeThermoelectric materialliquidous projection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
能源危機是當下最重要的議題之一,提高現今的能源使用效率、尋求可替代能源以及可再生能源是能源發展的方向。熱電材料可以將熱能以及電能作直接轉換,並且具有可逆性,將廢熱轉換為電能即可提升能源使用效率,是為有展望的材料之一。而Cu2Se是一種熱門的熱電材料,因為Cu2Se在410K時會發生相變化,使其結構改變並且熱導率()有著不連續性,且有著不錯的熱電性質(zT=1.6,1000K)。改善熱電材料之性質前,常從研究其結構開始,而相圖做為材料研究的基本知識,可幫助了解材料之相變化、反應溫度點、機械性質…等眾多重要性質,因此在此項研究計畫著重於先建構Cu-Sb-Se之三元相圖,並研究部分參雜Sb時,Cu2Se的熱電性質變化。本研究的工作內容包含:(1)以實驗建構Cu-Sb-Se三元系統350 °C之等溫橫截面圖、(2)以實驗建構Cu-Sb-Se三元系統之液相線投影圖、(3)準備非化學計量比之Sb 參雜Cu2Se之合金,進行熱電性質量討論及量測。由本研究結果可知,共有Cu3SbSe3、Cu3SbSe4、CuSbSe2等三個三元合金存在於350 °C等溫橫截面圖,在 350℃等溫橫截面圖中包含三個單相區、十二個三相區及十六個兩相區;從實驗中確立各相組成。液相線投影圖經過實驗分析之結果一共存在個八個首要析出相,以及四個互融間隙 (miscibility gap)。在熱電性質方面,合金#A2(Cu1.99Sb0.01Se)在623K下擁有最高之zT值(zT~0.6),較未參雜Cu2Se之zT值(zT~0.47)增加了約127%,由金相分析可知,合金#A2存在微量二次析出相Cu2Sb,致使電阻率()有所下降。
Energy crisis is one of the most important issues in our time.To ehance the efficiency of energy,finding renewable energy is a good way. Thermoelectric materials and devices can convert thermal energy into electricity, and it is reversible. Waste heat recovery can improve energy efficiency. Among all the thermoelectric materials,Cu2Se is a popular thermoelectric material. There is a phase transformation about Cu2Se in 410k. The structure of Cu2Se would change in this temperature.To improve the properties of a thermoelectric material, we usually start from its microstructure.Phase diagram is a basic knowledge of materials,which can help us understand the phase transformation of the material, reaction temperature, mechanical properties and so on. In this study, we focused on the phase relations of Cu-Sb-Se system at 350 °C ,including: (1) experimently determine the phase relations of the Cu-Sb-Se ternary system at 350 °C; (2) experimently determine the liquidous projection of Cu-Sb-Se ternary system (3) analyze ternary Cu-Sb-Se alloys with the specific composition and measurses the thermoelectric properties . The ternary Cu-Sb-Se alloys are thermally-equilibrated at 350°C for 45 days to cofirm the phase relations , constructing the homogeneity region of Cu2Se compound.There are 8 primary solidification phase and four misbility-gap in ternary Cu-Sb-Se liquidus projection.The highest zT value were found in Alloy #A2 in Cu2Se system at 623K.
論文審定書 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 xix
一、前言 1
二、文獻回顧 6
2-1 熱電元件 6
2-2 Cu2Se熱電材料 8
2-2-1 Cu-Se二元系統相圖 11
2-2-2 Sb-Se 二元系統相圖 11
2-2-3 Cu-Sb二元系統相圖 11
三、實驗方法 17
3-1 Cu-Se-Sb三元系統之350°C等溫橫截面圖 17
3-2 Cu-Se-Sb 三元系統之液相線投影圖 19
3-3 Cu-Se-Sb 三元系統之熱電性質 20
四、結果與討論 21
4-1 Cu-Sb-Se 350°C等溫橫截面圖 21
4-1-1 Cu2Sb+Cu2Se+Sb 三相區 25
4-1-2 Cu2Se+Sb兩相區 39
4-1-3 Cu3SbSe3+Cu2Se+Sb三相區 41
4-1-4 Cu3SbSe3+ Sb 兩相區 43
4-1-5 Cu3SbSe3+CuSbSe2+Sb三相區 47
4-1-6 CuSbSe2+Sb兩相區 50
4-1-7 CuSbSe2+ Sb2Se3+Sb 三相區 52
4-1-8 Cu3SbSe4+ Sb2Se3+Liquid 三相區 54
4-1-9 Cu3SbSe4+Sb2Se3兩相區 56
4-1-10 CuSbSe2+Cu3SbSe4兩相區 58
4-1-11 Cu3SbSe4+Liquid兩相區 61
4-1-12 Cu3SbSe4+CuSe 兩相區 63
4-1-13 Cu10Sb3+Cu2Sb+Cu2Se 三相區 66
4-1-14 Cu10Sb3+ Cu2Se 兩相區 68
4-2 Cu-Sb-Se 350°C 三元系統液相線投影圖 74
4-2-1 Cu2Se 首要析出相區 76
4-2-2 Cu3Sb首要析出相區 93
4-2-3 Cu2Sb首要析出相區 99
4-2-4 Cu3SbSe3首要析出相區 101
4-2-5 Cu3SbSe4首要析出相區 109
4-2-6 CuSbSe2首要析出相區 115
4-2-7 Sb2Se3首要析出相區 117
4-2-8 Sb首要析出相區 124
4-3 三元Cu-Sb-Se系統之熱電性質 133
4-3-1 Cu2Se熱電性質探討 134
4-3-2 Cu2-xSbxSe(X=0.005, 0.01,0.03,0.05)之熱電性質探討 139
4-3-3 Cu2SbXSe1-X (X= 0.01,0.02,0.03)之熱電性質探討 147
4-3-4 (Cu3SbSe4) X (Cu2Se) 1-x (X= 0.01,0.02)之熱電性質探討 154
五、結論 162
六、參考文獻 167
[1] D.D. Pollock. A-2 Thermoelectric phenomena. CRC Handbook of Thermoelectrics. ,(1995)

[2] W. Liu, X. Yan, G. Chen, Z. Ren, ”Recent advances in thermoelectric nanocomposites” , Nano Energy, Vol. 1, pp.42–56, (2012).

[3]X. Zhang, L.D. Zhao, “ Thermoelectric materials: Energy conversion between heat and electricity", Journal of Materiomics, Vol. 1, pp.92-105, (2015).

[4] http://www.daviddarling.info/encyclopedia/T/Thomson_effect.html

[5] G.J. Snyder, E. S. Toberer, “Complex thermoelectric materials", Nature Materials, Vol. 7, pp.105-114, (2008).

[6] L. E. Bell,“Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems", Science , Vol. 321 , pp.1457-1461 , (2008).

[7] G.J. Snyder,“Small Thermoelectric Generators", The Electrochemical Society Interface, pp.54-56, (2008).

[8] C.J. Vineis , A. Shakouri, A. Majumdar, M.G. Kanatzidis,“Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features", Advanced Materials , Vol. 22, pp.3970-3980, (2010).

[9] S. LeBlanc, “Thermoelectric generators: Linking material properties and systems engineering for waste heat recovery applications", Sustainable Materials and Technologies , Vol. 1-2, pp.26-35, (2014).

[10] A. Minnich, M. Dresselhaus, Z. Ren, G. Chen, ”Bulk nanostructured thermoelectric materials: current research and future prospects”, Energy&Environmental Science, Vol. 2, pp.466-479, (2009).

[11] B. Yu , W. Liu ,S. Chen, H. Wang, H. Wang, G. Chen, Z.Ren,”Thermoelectric properties of copper selenide with ordered selenium layer and disordered copperlayer” , NanoEnergy, Vol. 1, pp.472-478, (2012).

[12] S. Ballikaya, H. Chi, J.R. Salvador, C. Uher ,“Thermoelectric properties of Ag-doped Cu2Se and Cu2Te” , Journal of Materials Chemistry, Vol. 1, pp.12478-12484, (2013).

[13] H. Liu , X. Yuan, P. Lu, X. Shi, F. Xu, Y. He, Y. Tang, S. Bai, W. Zhang, L. Chen, Y. Lin, L. Shi, H. Lin, X. Gao, X. Zhang, H. Chi, C. Uher, “Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2 Se1-x Ix.” , Advanced Materials, Vol. 25, pp.6607-6612, (2013).

[14] X.X. Xiao, W. Xie, X.F. Tang, Q.J. Zhang, “Phase transition and high temperature thermoelectric properties of copper selenide Cu2-xSe (0 <= x <= 0.25)” , Chinese Physics, Vol. 20, pp.087201, (2011).


[15] D. R. Brown, T. Day, K. A. Borup, S. Christensen, B.B. Iversen, G.J. Snyder, “Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides”, APL Materials, Vol.1, pp.052107, (2013).

[16] D. Li , X.Y. Qin, Y.F. Liu, C.J. Song, L. Wang , J. Zhang, H.X. Xin, G.L. Guo, T.H. Zou, G.L. Sun, B.J. Ren, X.G. Zhu, “Chemical synthesis of nanostructured Cu2Se with high thermoelectric performance” , RSC Advances, Vol. 4, pp.8638-8644, (2014).

[17] K. Okamoto, “Thermoelectric power and phase transition of Cu2Se” , Japanese Journal of Applied Physics, Vol.10, (1971).

[18] H. Chi, H. Kim, J. C. Thomas, G. Shi, K. Sun, M. Abeykoon, E. S. Bozin, X. Shi, Q. Li, X. Shi, E. Kioupakis, A.V. Ven, M. Kaviany, C. Uher, “Low-temperature structural and transport anomalies in Cu2Se” , Physical review, Vol. 89, pp.195209, (2014).

[19] K. Cohen, J. Rivet, J. Dugue ,“Description of the Cu-As-Se ternary system", Journal of Alloys and Compounds, Vol. 224, pp.316-329(14), (1995).

[20] H. Okamoto ,“Sb-Se(AntimonySelenium) ", Binary Alloy Phase Diagrams, II Ed., Ed. T.B. Massalski, Vol. 3, pp.3300-3302, (1990).

[21] G. Ghosh, “The Sb-Se(Antimony-Tellurium) system Phase equilibria in the Cu-Se system", Journal of Phase Equilibria, Vol. 14(6), pp.753-763, (1993).

[22] V. M. Glazov, A. S. Pashinkin, V. A. Fedorov, “Phase equilibria in the Cu-Se system", Inorganic Materials, Vol. 36, pp.641-652, (2000).

[23] H. Okamoto, “ Comment on Cu-Sb(Copper-Antimony) ", Journal of Phase Equilibria, Vol. 16, pp.472, (1995).

[24]http://www.tf.unikiel.de/matwis/amat/elmat_en/kap_2/backbone/r2_3_3.html

[25] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O''Quinn, “ Thin-film thermoelectric devices with high room-temperature figures of merit” , Nature, Vol. 413, pp.597-602, (2001).

[26] J.S. Rhyee, K.H. Lee, S.M. Lee, E. Cho, S.I. Kim, E. Lee, Y.S. Kwon, J. H. Shim, G. Kotliar, “Peierls distortion as a route to high thermoelectric performance in In4Se3-delta crystals", Nature, Vol. 459, pp.965–968, (2009).

[27] H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang,L. Chen, Q. Li, C. Uher, T. Day, G J. Snyder , “ Copper ion liquid-like thermoelectrics", Nature Materials , Vol. 11, pp.422-425, (2012).


[28] K.N.T university of technology electronic department crystal growth instructor: Prof. f. hossein-babaei presented by: m. h. jalalpour p. talebnia 1 fall.

[29] W. Scott. , J.R. Kench, “ Phase diagram and properties of Cu3SbSe4 and other A3IBVC4VI"compounds", Materials Research Bulletin, Vol 8, pp.1257-1267, (1973).

[30] F.S. Liu, M.J. Huang, Z.N. Gong, W.Q. Ao, Y. Li, J.Q. Li, “Enhancing the thermoelectric performance of -Cu2Se byincorporating SnSe", Journal of Alloys and Compounds, pp.648-654, (2015).

[31] Y. Chongyin , W. Yaoming, L. Shaotang W. Dongyun , H. Fuqiang, “CuSbSe2-assisted sintering of CuInSe2 at low temperature", Journal of materials science, Vol. 47, pp.7085-7089, (2012).

[32] T. Sakuma, F. Suzuki, S. Saitoh, K. Sugiyama, E. Matsubara, Y. Waseda, “Diffuse Scattering of Superionic Phase of Cu2Se", Journal of the Physical Society of Japan, Vol 62, no 10, pp.3513-3518, (1993).

[33] D. Zhang, J. Yang, Q. Jiang, L. Fu, Y. Xiao, Y. Luo, Z. Zhou, “Improvement of thermoelectric properties of Cu3SbSe4 compound by In doping", Materials and Design, pp.150-154, (2016).

[34] F. Jia, S. Zhang, X. Zhang, X. Peng, H. Zhang, and Yong Xiang “Sb-Triggered -to- Transition:Solvothermal Synthesis of Metastable a-Cu2Se", Chemistry A European Journal, pp.15942-15946, (2014).

[35] L. L. Zhao, X. I. Wang, J. Y. Wang, Z. X. Cheng, S. X. Dou, J.Wang
, L. Q. Liu, “Superior intrinsic thermoelectric performance with zT of 1.8 in
single-crystal and melt-quenched highlydense Cu2-xSe bulks", Scientific Reports , (2015).

[36] O. Milat, Z. Vučić , “Superstructural ordering in low-temperature phase of superionic Cu2Se", Solid State Ionics, Vol.23, pp.37-47, (1987).

[37] L. Gulay, M. Daszkiewicz, O. Strok, A. Pietraszko, “CCrystal structure of Cu2Se", Chemistry of Metals and Alloys, pp.200-205, (2011).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔