( 您好!臺灣時間:2024/04/18 02:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Hsu Chuan
論文名稱(外文):The carrier relaxation of InAs/GaAs Quantum Dots
指導教授(外文):Der-Jun Jang
外文關鍵詞:Like-Auger process band-filling effectTime-resolved pump-probe techniquequantum confinement effectPhonon bottleneckBand-filling effect
  • 被引用被引用:0
  • 點閱點閱:304
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文將探討量子點元件及塊材之間的載子動態差異,我們藉由超快時間解析激發-探測光譜的技術(Time-resolved pump-probe technique)來探討室溫下砷化鎵、砷化銦、砷化銦/砷化鎵的載子動力學,並探討其激發載子能量釋放方式及量子現象。可以發現多層量子點因著量子侷限效應、聲子瓶頸效應及類歐傑散射讓載子鬆弛之行為有別於一般塊材。隨著量子點元件層數不同導致應力變大發現激發-探測光譜,會有正負的轉變。最後利用三階速率方程式對激發-探測光譜進行數據擬合,發現載子數變化與反射率成平方關係。
The aim of this study was to examine the energy released due to excitation and recombination of a GaAs bulk, InAs, and InAs/GaAs quantum dots at room temperature by the time-resolved pump-probe technique (TRPP). We found that multi-layer quantum dots behaved differently from bulk materials due to qantum cnfinement efect, ponon bottleneck, and like-auger process. When the sample with one Quantum Dot layer was changed with a sample with three Quantum Dot layers, the pump - probe spectrum or the peak number experienced a drastic change, so drastic that it changed from a negative value to a positive value. This phenomenon is called band-filling effect. Finally, using the third-order rate equation to fit the data of pump - probe spectra, it was found that the square of the carrier density is proportional to the reflectivity.
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
第一章緒論 1
1.1量子點簡介及發展 1
1.2文獻回顧 3
1.3研究動機 5
第二章 實驗架構及分析方法 6
2.1激發-探測原理 6
2-2實驗架設 7
2-3 相位偽影(coherent artifact) 9
第三章 載子動力學 10
3-1 激發電子能量釋放過程25 10
3-2量子點之物理機制 11
3-2.1載子進入量子點機制 11
3-2.2電子與電洞的結合機制 12
3.3三級速率方程式 13
3.4激發載子濃度與光束大小計算 15
第四章 樣品分析與討論 17
4-1 樣品介紹 17
4-1.1光激發螢光光譜 18
4-1.2時間解析激發-探測數據分析 23
4-1.3量子點不同激發光強度 27
4-1.4量子點不同激發能量 32
4-2衰減時間分析 35
4-2.1砷化鎵塊材衰減時間 35
4-2.2砷化銦衰減時間 37
4-2.2砷化鎵/砷化銦多層量子點衰減時間 39
4-3速率方程式之擬合 42
4-4時間解析螢光光譜 46
第五章 結論 48
參考目錄 49
圖附件 53
[1] Chennupati Jagadish and Stephen Pearton, “Zinc Oxide Bulk, Thin Films and Nanostructures”, Elsevier Science, p.32 (2006)
[2] Katsuaki Tanabe, Denis Guimard and Damien Bordel, “1.3 μm room-temperature GaAs-based quantum-dot laser”, IEEE Journal of Selected Topics in Quantum Electronic 3, 196 (1997).
[3] Gyoungwon Park, Oleg B. Shchekin and Sebastion Csutak, “Room-temperature continuous-wave operation of a single-layered 1.3 μm quantum dot laser”, Applied Physics Letters 75, 21 (1999).
[4] T. Tran, A. Muller, and C. K. Shiha, “Self-Assembled Quantum Dots”, Applied Physics Letters 91, 133104 (2007).
[5] T. Lundstrom, W. Schoenfeld, H. Lee and P. M. Petroff, “Exciton storage in semiconductor self-assembled quantum dots”, Science 286, 5448, 2312-2314 (1999).
[6] Miro Kroutvar, Yann Ducommun and Dominik Heiss, “Optically programmable electron spin memory using semiconductor quantum dots”, Nature 432, 81-84 (2004).
[7]程成,程瀟羽, “納米光子學及器件”, 科學出版社. 10-234 (2013)
[8] J.-Y. Marzin, J.-M. Gerard and A. Izrael, “Photoluminescence of Single InAs Quantum Dots Obtained by Self-Organized Growth on GaAs”, Physical Review Letters 73, 5 (1994).
[9] D. Leonard, M. Krishnamurthy and Aidong Shen, “Photoluminescence Study of InAs Quantum Dots and Quantum Dashes Grown on GaAs(211)B”, Japanese Journal of Applied Physics 37, 1527-1531 (1997).
[10] B. Daudin, F. Widmann and G. Feuillet, “Stranski-Krastanov growth mode during the molecular beam epitaxy of highly strained GaN”, Physical Review B 56, 12 (1997).
[11] Jennifer L. Stein, Elizabeth A. Mader, and Brandi M, “Highly efficient band‐edge emission from InP quantum dots”, J. Phys. Chem. Lett 7, 1315−1320 (2016).
[12] A. I. Ekimov, F. Hache, M. C. Schanne-Klein, “Absorption and intensity-dependent photolumins- cence measurements on CdSe quantum dots: assignment of the first electronic transitions”, Journal of the Optical Society of America B10, 1 (1993).
[13] Annika Elsena, Sven Festersena, Benjamin Rungea, “In situ X-ray studies of adlayer-induced crystal nucleation at the liquid–liquid interface”, Proceedings of the National Academy of Sciences 110, 17 6663-6668 (1937).
[14] Y. Nakata, K. Mukai, M. Sugawara, “Molecular beam epitaxial growth of InAs self-assembled quantum dots with light-emission at 1.3 μm”, Journal of Crystal Growth 208, 93-99 (2000).
[15] T. Inoshita and H. Sakaki, “Electron relaxation in a quantum dot: Significance of multiphonon processes”, Phys. Rev. B. 46, 11 (1992)
[16] J. Urayama and T. B. Norris, “Observation of Phonon Bottleneck in Quantum Dot Electronic Relaxation”, Phys. Rev. Lett. 86, 21 (2000)
[17] Q. Lia, Z.Y. Xua and W.K. Geb, “Carrier capture into InAs/GaAs quantum dots detected by a simple degenerate pump–probe technique”, Solid State Communications 115, 105-108 (2000)
[18] Thomas F. Boggess, L. ZhangD. G. Deppe and C. Cao, “Spectral engineering of carrier dynamics in In(Ga)As self-assembled quantum dots”, Appl. Phys. Lett 78,3(2001)
[19] T. Müller, F. F. Schrey, G. Strasser, and K. Unterrainer, “Ultrafast intraband spectroscopy of electron capture and relaxation in InAs/GaAs quantum dots”, Appl. Phys. Lett 83,17 (2003)
[20] Zhangcheng Xu, Yating ZhangJørn M and Wei Lu, “Carrier dynamics in submonolayer InGaAs∕GaAsInGaAs∕GaAs quantum dots”, Appl. Phys. Lett 89, 013113 (2006)
[21] T. Piwonski, I. O’Driscoll and J. Houlihan, “Carrier capture dynamics of InAs/GaAs quantum dots”, Appl. Phys. Lett 90, 122108 (2007)
[22] E. A. Zibik1, T. Grange, B. A. Carpenter, “Long lifetimes of quantum-dot intersublevel transitions in the terahertz range”, Nature materials 8, 803 - 807 (2009)
[23] Kripa Nidhan Chauhan, “Carrier Dynamics in InGaAs/GaAs QuantumDots Excited by Femtosecond Laser Pulses”, University of Utah State University (2012)
[24] Graham H. Jensen, “Temperature-Dependent Femtosecond Pump-Probe Spectrosc-opy of Thin-Film Vanadium Dioxide”, University of Rochester (2014)
[25] F. L. Pedrotti, S.J., L. M. Pedrotti, L. M. Pedrotti, “Introduction to Optics”, Third
Edition, Pearson Prentice Hall, p.672 (2007)
[26] A. Somintac, E. Estacio and A. Salvador, “Observation of blue-shifted photolumin- nescence in stacked InAs/GaAs quantum dots”, Journal of Crystal Growth 251 196-200 (2003)
[27] Brian R. Bennett, Richard A. Soref and Senior Member. Soref, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP”, IEEE Journal of Quantum Electronics 26,1 (1990)
[28] Henning Riechert. “Physical Properties of III-V Semiconductor Compounds” Wile- y, p.34-36 (1992).
[29] Sooraj Ravindran, Arnab Datta and Kamal Alameh, “GaAs based long-wavelength microring resonator optical switches utilising bias assisted carrier-injection induced refractive index change”, The Optical Society 14. 15610-15627 (2012)
第一頁 上一頁 下一頁 最後一頁 top