[1]H. Schmid, “Multi-ferroic magnetoelectrics”, Ferroelectrics 162, 317 (1994).
[2]J. P. Velev, S. S. Jaswal, and E. Y. Tsymbal, “Multi-ferroic and magnetoelectric materials and interfaces”, Phil. Trans. R. Soc. A 369, 3069 (2010).
[3]Nicola A. Spaldin and Manfred Fiebig, “The renaissance of magnetoelectric multiferroics”, Science 309, 391 (2005).
[4]Y. Tokura, “Multiferroics-toward strong coupling between magnetization and polarization in a solid”, J. Magn. Magn. Mater. 310, 1145 (2007).
[5]E. K. H. Salje, “Ferroelastic materials”, Annu. Rev. Mater. Res. 42, 265 (2012).
[6]R. S. Freitas, J. F. Mitchell, and P. Schiffer, “Magnetodielectric consequences of phase separation in the colossal magnetoresistance manganite Pr0.7Ca0.3MnO3”, Phys. Rev. B 72, 144429 (2005).
[7]J. P. Rivera, “A short review of the magnetodielectric effect and related experimental techniques on single phase (multi-) ferroics”, Eur. Phys. J. B 71, 299 (2009).
[8]B. Lorenz, Y. Q. Wang, Y. Y. Sun, and C. W. Chu, “Large magnetodielectric effects in orthorhombic HoMnO3 and YMnO3”, Phys. Rev. B 70, 212412 (2004).
[9]S. Mukherjee, C. H. Chen, C. C. Chou, K. F. Tseng, B. K. Chaudhuri, and H. D. Yang, “Colossal dielectric and magnetodielectric effect in Er2O3 nanoparticles embedded in a SiO2 glass matrix”, Phys. Rev. B 82, 104107 (2010).
[10]D. Hreniak, L. Marciniak, W. Strek, F. Piccinelli, A. Speghini, and M. Bettinelli, “Comment on “colossal dielectric and magnetodielectric effect in Er2O¬3 nanoparticles embedded in a SiO2 glass matrix””, Phys. Rev. B 84, 056102 (2011).
[11]S. Mukherjee, C. H. Chen, C. C. Chou, K. F. Tseng, B. K. Chaudhuri, and H. D. Yang, “Reply to “comment on ‘colossal dielectric and magnetodielectric effect in Er2O3 nanoparticles embedded in a SiO2 glass matrix’””, Phys. Rev. B 84, 056103 (2011).
[12]D. Khomskii, “Classifying multiferroics : mechanisms and effects”, Physics 2, 20 (2009).
[13]Jeroen van den Brink, and Daniel I Khomskii, “Multiferroicity due to charge ordering”, J. Phys.: Condens. Matter 20, 434217 (2008).
[14]D. V. Efremov, J. van den Brink, and D. I. Khomskii, “Bond- versus site-centred ordering and possible ferroelectricity in manganites”, Nat. Mater 3, 853(2004).
[15]C. Jardon, F. Rivadulla, L. E. Hueso, A. Fondado, M. A. Lopez-Quintela, J. Rivas, R. Zysler, M. T. Causa, and R. D. Sanchez, “Experimental study of charge ordering transition in Pr0.67Ca0.33MnO3”, J. Magn. Magn. Mater 196, 475 (1999).
[16]S. Mercone, A. Wahl, A. Pautrat, M. Pollet and C. Simon, “Anomaly in the dielectric response at the charge-orbital-ordering transition of Pr0.67Ca0.33MnO3”, Phys. Rev. B 69, 174433 (2004).
[17]G.T. Rado and J.M. Ferrari, “Electric field dependence of the magnetic anisotropy energy in magnetite (Fe3O4)”, Phys. Rev. B 12, 5166 (1975).
[18]G.T. Rado and J.M. Ferrari, “Linear and bilinear magnetoelectric effects in magnetically biased magnetite (Fe3O4)”, Phys. Rev. B 15, 290 (1977).
[19]Y. Miyamoto and S. Chikazumi, “Crystal symmetry of magnetite in low temperature phase deduced from magnetoelectric measurements”, J. Phys. Soc. Jpn. 57, 2040 (1988).
[20]Y. Miyamoto and M. Shindo, “Magnetoelectric measurement of magnetite (Fe3O4) at low temperatures and direct evidence for nonexistence of ac mirror plane”, J. Phys. Soc. Jpn. 62, 1423 (1993).
[21]Y. Miyamoto, S. Ishihara, T. Hirano, M. Takada, and N. Suzuki, Solid state commun. 89, 51 (1994).
[22]N. Ikeda, K. Kohn, N. Myouga, E. Takahashi, H. Kitoh, and S. Takekawa, “Charge frustration and dielectric dispersion in LuFe2O4”, J. Phys. Soc. Jpn. 69 1526 (2000).
[23]N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guba, and S-W. Cheong, “Electric polarization reversal and memory in a multiferroic material induced by magnetic fields”, Nature 429, 392 (2004).
[24]T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, “Magnetic control of ferroelectric polarization”, Nature 426, 55 (2003).
[25]N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S.-W. Cheong, “Electric polarization reversal and memory in a multiferroic material induced by magnetic fields”, Nature 429, 392 (2004).
[26]S.-W. Cheong and M. Mostovoy,“Multiferroics:a magnetic twist for ferroelectricity”, Nat. Mater 6, 13 (2007).
[27]Y.J. Choi, H.T. Yi, S. Lee, Q. Huang, V. Kiryukhin, and S-W. Cheong, “Ferroelectricity in an ising chain magnet”, Phys. Rev. Lett 100, 047601 (2008).
[28]W. Eerenstein, N. D. Mathur, and J. F. Scoot, “Mulitiferroic and magnetoelectric materials”, Nature (London) 442, 17 (2006).
[29]G. H. Wannier, “Antiferromagnetism. The triangular ising net”, Phys. Rev. 79(2) 357 (1950).
[30]J. Vannimenus and G. Toulouse, “Theory of the frustration effect. II. Ising spins on a square lattice”, J. Phys. C 10, L537 (1977).
[31]S. Nakatsuji, Y. Nambu, H. Tonomura, O. Sakai, S. Jonas, C. Broholm, H. Tsunetsugu, Y. Qiu, and Y. Maeno, “Spin disorder on a triangular lattice”, Science 309, 1697 (2005).
[32]I. Terasaki, Y. Sasago, and K. Uchinokura, “Large thermoelectric power in NaCo2O4 single crystals”, Phys. Rev. B 56, R12685 (1997).
[33]Leon Balents, “Spin liquids in frustrated magnets”, Nature 464, 199-208 (2010).
[34]M. J. R. Hoch, P. L. Kuhns, S. Yuan, T. Besara, J. B. Whalen, T. Siegrist, A. P. Reyes, J. S. Brooks, H. Zheng, and J. F. Mitchell, “Evidence for an internal-field-induced spin-flop configuration in the extended kagome YBaCo4O7”, Phys. Rev. B 87, 064419 (2013)
[35]D. Grohol, K. Matan, J.-H. Cho, S.-H. Lee, J. W. Lynn, D. G. Nocera, and Y. S. Lee, “Spin chirality on a two dimensional frustrated lattice”, Nat. Mater 4, 323 (2005).
[36]Daniel G. Nocera, Bart M. Bartlett, Daniel Grohol, Dimitris Papoutsakis, and Matthew P. Shores, “Spin frustration in 2D kagomÿ lattices : a problem for inorganic synthetic chemistry”, Chem. Eur. J. 10, 3850-3859 (2004).
[37]B. P. Uberuaga, D. Bacorisen, R. Smith, J A. Ball, R. W. Grimes, A. F. Voter, and K. E. Sickafus, “Defect kinetics in spinels: long-time simulations of MgAl2O4, MgGa2O4 and MgIn2O4”, Phys. Rev. B 75, 104116 (2007).
[38]W. Y. Ching, S. Aryal, P. Rulis, and W. Schnick, “Electronic structure and physical properties of the spinel-type phase of BeP2N4 from all-electron density functional calculations”, Phys. Rev. B 83, 155109 (2011).
[39]A. N. Yaresko, “Electronic band structure and exchange coupling constants in ACr2X4 spinels”, Phys. Rev. B 77, 115106 (2008).
[40]T. M. McQueen, D. V. West, B. Muegge, Q. Huang, K. Noble, H. W. Zandbergen, and R. J. Cava, “Frustrated ferroelectricity in niobate pyrochlores”, J. Phys.: Condens. Matter 20, 235210 (2008).
[41]K. Matsuhira, M. Tokunaga, M. Wakeshima, Y. Hinatsu, and S. Takagi, “Giant magnetoresistance effect in the metal-insulator transition of pyrochlore oxide Nd2Ir2O7”, J. Phys. Soc. Jpn. 82, 023706 (2013).
[42]Gia-Wei Chern, Saurabh Maiti, Rafael M. Fernandes, and Peter Wölfle, “Electronic transport in the coulomb phase of the pyrochlore spin ice”, Phys. Rev. Lett. 110, 146602 (2012).
[43]P. Millet, B. Bastide, V. Pashchenko, S. Gnatchenko, V. Gapon, Y. Ksari, and A. Stepanov, “Syntheses, crystal structures and magnetic properties of francisite compounds Cu3Bi(SeO3)2O2X (X = Cl, Br, and I)”, J. Mater. Chem. 11, 1152–1157 (2001).
[44]H. C. Wu, K. Devi Chandrasekhar, J. K. Yuan, J. R. Huang, J.-Y. Lin, H. Berger, and H. D. Yang, “Anisotropic spin-flip-induced multiferroic behavior in kagome Cu3Bi(SeO3)2O2Cl”, Phys. Rev. B 95, 125121 (2017).
[45]V. Gnezdilov, Yu. Pashkevich, V. Kurnosov, P. Lemmens, E. Kuznetsova, P. Berdonosov, V. Dolgikh, K. Zakharov, and A. Vasiliev, “Longitudinal magnon, inversion breaking and magnetic instabilities in the pseudo-Kagome francisites Cu3Bi(SeO3)2O2X with X=Br, Cl”, arXiv:1604.04249.
[46]K. H. Miller, P. W. Stephens, C. Martin, E. Constable, R. A. Lewis, H. Berger, G. L. Carr, and D. B. Tanner, “Infrared phonon anomaly and magnetic excitations in single-crystal Cu3Bi(SeO3)2O2Cl”, Phys. Rev. B 86, 174104 (2012).
[47]Z. Wang, N. Qureshi, S. Yasin, A. Mukhin, E. Ressouche, S. Zherlitsyn, Y. Skourski, J. Geshev, V. Ivanov, M. Gospodinov, and V. Skumryev, “Magnetoelectric effect and phase transitions in CuO in external magnetic fields”, Nat. Commun. 7, 10295 (2016).
[48]Y. Tokunaga, S. Iguchi, T. Arima, and Y. Tokura, “Magnetic-field-induced ferroelectric state in DyFeO3”, Phys. Rev. Lett. 101, 097205 (2008).
[49]J. Hwang, E. S. Choi, H. D. Zhou, J. Lu, and P. Schlottmann, “Magnetoelectric effect in NdCrTiO5” , Phys. Rev. B 85, 024415 (2012).
[50]楊鴻昌,“最敏感的感測元件SQUID及前瞻性應用”, 物理雙月刊 24, 652 (2002).[51]H. M. Rietveld, “A profile refinement method for nuclear and magnetic structure”, J. Appl. Crystallogr. 2, 65 (1969).
[52]R. J. Hill and I. C. Madsen, “Data collection strategies for constant wavelength rietveld analysis”, Powder Diffr. 2, 146 (1987).
[53]R. J. Hill and C. J. Howard, “Peak shape variation in fixed-wavelength neutron powder diffraction and its effect on structural parameters obtained by Rietveld analysis”, J. Appl. Crystallogr. 18, 173 (1985).