|
[1]Hill, N.A., Density functional studies of multiferroic magnetoelectrics. Annual Review of Materials Research, 2002. 32: p. 1-37. [2]Khomskii, D., Classifying multiferroics: Mechanisms and effects. Physics, 2009. 2. [3] Hur, N., et al., Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature, 2004. 429(6990): p. 392-395. [4]Cheong, S.-W. and M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity. Nature Materials, 2007. 6(1): p. 13-20. [5]Spaldin, N.A. and M. Fiebig, The renaissance of magnetoelectric multiferroics. Science, 2005. 309(5733): p. 391-392. [6]van den Brink, J. and D.I. Khomskii, Multiferroicity due to charge ordering. Journal of Physics-Condensed Matter, 2008. 20(43). [7]Schmid, H., Multi-ferroic magnetoelectrics. Ferroelectrics, 1994. 162(1): p. 317-338. [8]Fiebig, M., Revival of the magnetoelectric effect. Journal of Physics D-Applied Physics, 2005. 38(8): p. R123-R152. [9]Gao, J.S. and N. Zhang, Acoustic wave coupled magnetoelectric effect. Journal of Magnetism and Magnetic Materials, 2016. 410: p. 23-26. [10]Nan, C.W., Y.H. Lin, and J.H. Huang, Magnetoelectricity of multiferroic composites. Ferroelectrics, 2002. 280: p. 319-329. [11]Kanamori, J., SUPEREXCHANGE INTERACTION AND SYMMETRY PROPERTIES OF ELECTRON ORBITALS. Journal of Physics and Chemistry of Solids, 1959. 10(2-3): p. 87-98. [12]Kramers, H.A., L''interaction Entre les Atomes Magnétogènes dans un Cristal Paramagnétique. Physica, 1934. 1(1-6): p. 182-192. [13]Anderson, P.W., Antiferromagnetism. Theory of Superexchange Interaction. Physical Review, 1950. 79(2): p. 350-356. [14]Pommer, J., et al., Interplay between structure and magnetism in the spin-chain compound(Cu,Zn)2V2O7. Physical Review B, 2003. 67(21). [15] Fleury, P. C. R. C. R. Acad. Sci., Ser. C 1966, 263, 1375. [16]Krivovichev, S.V., et al., Crystal structure of gamma-cu(2)v(2)o(7) and its comparison to blossite (alpha-cu(2)v(2)o(7)) and ziesite (beta-cu(2)v(2)o(7)). Canadian Mineralogist, 2005. 43: p. 671-677. [17]CALVO, C. and R. FAGGIANI, alpha Cupric Divanadate SHORT STRUCTURAL PAPERS 1974. [18]Sannigrahi, J., et al., Exchange-striction induced giant ferroelectric polarization in copper-based multiferroic materialα−Cu2V2O7. Physical Review B, 2015. 91(22). [19]Sotojima, K., et al., Thermoelectric Properties and Phase Transition of (ZnxCu2−x)V2O7. Materials Transactions, 2007. 48(8): p. 2094-2099. [20]Gitgeatpong, G., et al., Magnetic structure and Dzyaloshinskii-Moriya interaction in theS=1/2 helical-honeycomb antiferromagnetα−Cu2V2O7. Physical Review B, 2015. 92(2). [21]Ponomarenko, L.A., et al., Magnetic properties of Cu2V2O7. Physica B, 2000. 284: p. 1459-1460. [22]Touaiher, M., et al., Crystal structures and magnetic properties of M2V2O7 (M=Co, Ni and Cu) compounds. Materials Chemistry and Physics, 2004. 85(1): p. 41-46. [23]Moriya, T., NEW MECHANISM OF ANISOTROPIC SUPEREXCHANGE INTERACTION. Physical Review Letters, 1960. 4(5): p. 228-230. [24] S.V. Vonsovskii, in: R. Hardin (Ed.), Magnetism, Wiley, New York, 1974. [25]Lee, Y.W., et al., Magnetism and magnetoelectricity in the polar oxide alpha-Cu2V2O7. Epl, 2016. 113(2). [26]Yu, W.L. and M.G. Zhao, SPIN-HAMILTONIAN PARAMETERS OF S-6-STATE IONS. Physical Review B, 1988. 37(16): p. 9254-9267. [27]Degl''Innocenti, E.L., ON THE EFFECTIVE LANDE FACTOR OF MAGNETIC LINES. Solar Physics, 1982. 77(1-2): p. 285-289. [28]Kim, P. and J.H. Han, Orbital Dzyaloshinskii-Moriya exchange interaction. Physical Review B, 2013. 87(20). [29]Hu, C.D., The Dzyaloshinskii-Moriya interaction in metals. Journal of Physics-Condensed Matter, 2012. 24(8). [30]Yashima, M. and R.O. Suzuki, Electronic structure and magnetic properties of monoclinicβ-Cu2V2O7: AGGA+Ustudy. Physical Review B, 2009. 79(12). [31]He, Z. and Y. Ueda, Flux Growth of β-Cu2V2O7Single Crystals in a Closed Crucible. Crystal Growth & Design, 2008. 8(7): p. 2223-2226. [32]Sánchez-Andújar, M., et al., Role of the magnetic ordering on the dielectric response of M2V2O7 (M = Co and Cu) divanadates. Journal of Applied Physics, 2011. 109(5): p. 054106. [33] C. N. R. Rao and J. Gopalakrishnan, New Directions in Solid State Chemistry (Cambridge University Press, Cambridge, 1997). [34] A. S. Tracey, G. R. Willsky, and E. S. Takeuchi, Vanadium Chemistry, Biochemistry, Pharmacology and Applications, (CRC press, Boca Raton, 2007). [35]Reddy, C.V.S., et al., Cathodic performance of (V2O5+PEG) nanobelts for Li ion rechargeable battery. Journal of Power Sources, 2007. 166(1): p. 244-249. [36]User`s Manual of the 6m-HSGM Beamline at SRRC. May 1996. [37]He, Z., et al., Magnetic properties of Co2V2O7 single crystals grown by flux method. Journal of Solid State Chemistry, 2009. 182(9): p. 2526-2529. [38]Khomskii, D.I. and G.A. Sawatzky, Interplay between spin, charge and orbital degrees of freedom in magnetic oxides. Solid State Communications, 1997. 102(2-3): p. 87-99. [39]Johnson, R.D., et al., Giant Improper Ferroelectricity in the Ferroaxial Magnet CaMn7O12. Physical Review Letters, 2012. 108(6). [40]Lu, X.Z., et al., Giant Ferroelectric Polarization of CaMn7O12 Induced by a Combined Effect of Dzyaloshinskii-Moriya Interaction and Exchange Striction. Physical Review Letters, 2012. 108(18). [41]Inaba, K., X-ray thin-film measurement techniques. The Rigaku Journal, 2008. 24(1). [42] D.K. Bowen and B.K. Tanner: “High Resolution X-ray Diffraction and Topography”, Taylor & Francis Inc. (1998) [43]Parratt, L.G., Surface Studies of Solids by Total Reflection of X-Rays. Physical Review, 1954. 95(2): p. 359-369. [44]Makhlin, Y., G. Schon, and A. Shnirman, Josephson-junction qubits with controlled couplings. Nature, 1999. 398(6725): p. 305-307. [45]Makhlin, Y., G. Schon, and A. Shnirman, Quantum-state engineering with Josephson-junction devices. Reviews of Modern Physics, 2001. 73(2): p. 357-400. [46]Bardeen, J., L.N. Cooper, and J.R. Schrieffer, Theory of Superconductivity. Physical Review, 1957. 108(5): p. 1175-1204. [47]Sacepe, B., et al., Localization of preformed Cooper pairs in disordered superconductors. Nature Physics, 2011. 7(3): p. 239-244. [48]Czernuszewicz, R.S., CLOSED-CYCLE REFRIGERATOR SOLUTION AND ROTATING SOLID SAMPLE CELLS FOR ANAEROBIC RESONANCE RAMAN-SPECTROSCOPY. Applied Spectroscopy, 1986. 40(4): p. 571-573. [49]Erbil, A., et al., TOTAL-ELECTRON-YIELD CURRENT MEASUREMENTS FOR NEAR-SURFACE EXTENDED X-RAY-ABSORPTION FINE-STRUCTURE. Physical Review B, 1988. 37(5): p. 2450-2464. [50]Stephenson, R.J., X-Ray Fluorescence Yields. Physical Review, 1937. 51(8): p. 637-642. [51]Sole, V.A., et al., A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochimica Acta Part B-Atomic Spectroscopy, 2007. 62(1): p. 63-68. [52] S. Eisebitt, T. Böske, J.–E. Rubensson, and W. Eberhardt, Phys. Rev. B 47,14013 (1993).
|