|
1Hong, T. et al. Anisotropic photocurrent response at black phosphorus-MoS2 p-n heterojunctions. Nanoscale 7, 18537-18541 (2015). 2Hu, P., Wen, Z., Wang, L., Tan, P. & Xiao, K. Synthesis of Few-Layer GaSe Nanosheets for High Performance Photodetectors. ACS Nano 6, 5988-5994 (2012). 3Mudd, G. W. et al. The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals. Scientific Reports 6, 39619 (2016). 4Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Physical Review B 83, 245213 (2011). 5Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat Photon 8, 899-907 (2014). 6Voevodin, V. G. et al. Large single crystals of gallium selenide: growing, doping by In and characterization. Optical Materials 26, 495-499 (2004). 7Zhou, Y. et al. Epitaxy and Photoresponse of Two-Dimensional GaSe Crystals on Flexible Transparent Mica Sheets. ACS Nano 8, 1485-1490 (2014). 8Ben Aziza, Z. et al. van der Waals Epitaxy of GaSe/Graphene Heterostructure: Electronic and Interfacial Properties. ACS Nano 10, 9679-9686 (2016). 9Debbichi, L., Eriksson, O. & Lebègue, S. Two-Dimensional Indium Selenides Compounds: An Ab Initio Study. The Journal of Physical Chemistry Letters 6, 3098-3103 (2015). 10Feng, W., Zhou, X., Tian, W. Q., Zheng, W. & Hu, P. Performance improvement of multilayer InSe transistors with optimized metal contacts. Physical Chemistry Chemical Physics 17, 3653-3658 (2015). 11Hasegawa, Y. & Abe, Y. Electrical and optical characteristics of a schottky barrier on a cleaved surface of the layered semiconductor InSe. physica status solidi (a) 70, 615-621 (1982). 12Mudd, G. W. et al. Tuning the Bandgap of Exfoliated InSe Nanosheets by Quantum Confinement. Advanced Materials 25, 5714-5718 (2013). 13Lei, S. et al. Evolution of the Electronic Band Structure and Efficient Photo-Detection in Atomic Layers of InSe. ACS Nano 8, 1263-1272 (2014). 14Qasrawi, A. F. Fabrication of Al/MgO/C and C/MgO/InSe/C tunneling barriers for tunable negative resistance and negative capacitance applications. Materials Science and Engineering: B 178, 851-856 (2013). 15Late, D. J. et al. GaS and GaSe Ultrathin Layer Transistors. Advanced Materials 24, 3549-3554 (2012). 16Tamalampudi, S. R. et al. High Performance and Bendable Few-Layered InSe Photodetectors with Broad Spectral Response. Nano Letters 14, 2800-2806 (2014). 17Grandolfo, M., Gratton, E., Somma, F. A. & Vecchia, P. Exciton binding energies of layer-type semiconductors GaSe and GaTe. physica status solidi (b) 48, 729-735 (1971). 18Goi, A. R., Cantarero, A., Schwarz, U., Syassen, K. & Chevy, A. Low-temperature exciton absorption in InSe under pressure. Physical Review B 45, 4221-4226 (1992). 19Faguang, Y. et al. Fast, multicolor photodetection with graphene-contacted p -GaSe/ n -InSe van der Waals heterostructures. Nanotechnology 28, 27LT01 (2017). 20Novoselov, K. S. et al. Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666-669 (2004). 21Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat Mater 6, 183-191 (2007). 22Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419-425 (2013). 23Green, M. A. et al. Solar cell efficiency tables (version 49). Progress in Photovoltaics: Research and Applications 25, 3-13 (2017). 24Buscema, M. et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chemical Society Reviews 44, 3691-3718 (2015). 25Mueller, T., Pospischil, A. & Furchi, M. M. 2D materials and heterostructures for applications in optoelectronics. Proc. of SPIE 9467, 946713-946713-946716 (2015). 26Li, M.-Y. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 349, 524-528 (2015). 27Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat Nano 9, 257-261 (2014). 28Furchi, M. M., Pospischil, A., Libisch, F., Burgdörfer, J. & Mueller, T. Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction. Nano Letters 14, 4785-4791 (2014). 29Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat Nano 9, 676-681 (2014). 30Furchi, M. M. et al. Photovoltaics in Van der Waals Heterostructures. IEEE Journal of Selected Topics in Quantum Electronics 23, 106-116 (2017). 31Li, X. et al. Controlled Vapor Phase Growth of Single Crystalline, Two-Dimensional GaSe Crystals with High Photoresponse. 4, 5497 (2014). 32Zhesheng, C., Karim, G., Mohamed, B., Johan, B. & Abhay, S. Anodic bonded 2D semiconductors: from synthesis to device fabrication. Nanotechnology 24, 415708 (2013). 33https://howlingpixel.com/wiki/Heterojunction 34http://www.wikiwand.com/en/Graphene 35http://skepticsplay.blogspot.tw/2011/06/what-is-electronic-band-structure.html 36https://www.volker-quaschning.de/articles/pv-basics/index.php 37https://www.electrical4u.com/p-n-junction-diode/ 38http://www.superstrate.net/pv/limit/
|