跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 03:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張嘉佑
研究生(外文):Chia-yu Chang
論文名稱:氮化銦鎵太陽能電池結構材料之光學特性分析
論文名稱(外文):Optical Characteristics of InGaN Solar Cell Structural Materials
指導教授:杜立偉杜立偉引用關係
指導教授(外文):Li-Wei Tu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:87
中文關鍵詞:電漿輔助分子束磊晶系統氮化銦鎵太陽能電池奈米柱奈米結構
外文關鍵詞:nanostructureplasma-assisted molecular beam epitaxyInGaNsolar cells structuresnanorods
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗共分為兩部份,量測利用氮電漿輔助分子束磊晶系統(PAMBE),在c面n-type氮化鎵基板上成長氮化銦鎵奈米柱,以及量測同樣使用氮電漿輔助分子束磊晶系統成長氮化銦鎵薄膜。並藉由電子束掃描顯微鏡來了解樣品表面形貌。透過高解析度X射線繞射儀可得知樣品中氮化銦鎵的銦含量,並以銦含量作為調控的變因。也為了使太陽能電池所能涵蓋的波長更長,藉由低溫高摻雜銦來成長氮化銦鎵薄膜。
為了分析樣品的光學特性,利用光致螢光(PL)系統以及陰極射線發光(CL)系統做一系列的量測,此一系列的量測,藉由調變不同參數來比較及分析,可擴展製作太陽能電池的可能性。
在第一部份,可得到較好的氧蝕刻奈米球參數、較好的鎂摻雜參數以及五三族比參數,這些參數為奈米柱結構的最佳成長參數。第二部分系列樣品使用低溫成長並摻雜高銦含量,最後可得到銦含量約為20~40%,使得太陽能電池能涵蓋更長的波長。
In this thesis we study the physical properties of gallium nitride (GaN) nanorods and InGaN thin films. These samples were grown by plasma assisted molecular beam epitaxy (PAMBE) on c-plane GaN templates. Two types of samples were grown. The first set of samples were n-i-p GaN nanorods (NR) GaN templates fabricated using a predefined template. The second type of samples were epitaxial thin films of InGaN and InN grown on GaN templates.
The surface morphology of these samples was characterized by scanning electron microscopy (SEM) and structure and indium content was verified using two methods. The first method was by high resolution x-ray diffraction (HRXRD) to identify the various crystalline phases, while photoluminescence (PL) and cathodoluminescence (CL) spectroscopies were used to measure the optical band gap.
From our result we find that by optimizing the plasma etching conditions, and improving the Mg doping parameter, n-i-p nanorods can be obtained. In case of the epitaxial thin films, we observe that high indium content can be incorporated by optimizing the growth temperatures.
論文審定書 i
摘 要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 序論 1
1.1 太陽能電池簡述 1
1.2 氮化銦鎵及奈米柱太陽能電池簡介 2
1.3 實驗原理與基礎 4
1.4 太陽能電池性能表徵 6
1.5 氮化銦鎵材料探討 9
第二章 儀器介紹 10
2.1 分子束磊晶系統 (plasma assisted molecular beam epitaxy, PAMBE) 10
2.2 掃描式電子顯微鏡 (scanning electron microscopy, SEM) 11
2.3 高解析X光繞射 (high-resolution x-ray diffraction, HRXRD) 12
2.4 光致螢光 (photoluminescence, PL) 14
2.5 陰極射線發光 (cathodoluminescence, CL) 14
2.6 電子束蒸鍍 (electron beam evaporation) 15
2.7 感應耦合電漿蝕刻機 (ICP-etching) 16
2.8 拉曼光譜儀 (Raman spectroscopy) 17
第三章 實驗步驟與樣品資訊 18
3.1 氮化銦鎵奈米柱太陽能電池結構成長與樣品資訊 (樣品組 A, B, C) 18
3.1.1 氧電漿蝕刻參數變化組 (樣品A1, A2, A3) 19
3.1.2 鎂摻雜參數變化組 (樣品B1, B2, B3) 20
3.1.3 銦摻雜參數變化組 (樣品C1, C2) 21
3.2 蕭基太陽能電池成長與樣品資訊 (樣品組 D, E, F) 22
3.2.1 銦摻雜參數變化組 (樣品D1, D2) 22
3.2.2 三五族比參數變化組 (樣品E1, E2) 23
3.2.3 銦鎵比參數變化組 (樣品F1, F2) 24
第四章 光學量測與分析 25
4.1 氮化銦鎵奈米柱太陽能電池結構光學量測與分析 (樣品組 A, B, C) 26
4.1.1 掃描式電子顯微鏡影像 26
4.1.2 光致螢光發光光譜 29
4.1.3 陰極射線發光光譜 44
4.1.4 高解析x光繞射光譜 46
4.1.5 拉曼光譜 50
4.1.6 銦含量探討 52
4.2 蕭基太陽能電池結構光學量測與分析 (樣品組 D, E, F) 53
4.2.1 掃描式電子顯微鏡影像 53
4.2.2 光致螢光發光光譜 56
4.2.3 陰極射線發光光譜 61
4.2.4 高解析x光繞射光譜 63
4.2.5 拉曼光譜 69
4.2.6 銦含量探討 71
第五章 結論 72
參考文獻 73
附錄: 76
A1. 高解析x光繞射光譜data base 76
[1] 熊谷秀, ‘太陽光電知多少’, 科學發展月刊第383期, (2008)
[2] IEA (International Energy Agency), in Renewable Energy Outlook, 2012
[3] 熊紹珍, 朱美芳, ‘太陽能電池基礎與應用’, 科學出版社, (2009)
[4] Martin A. Green, ‘The Path to 25% Silison Solar Cell Efficiency: History of Silicon Cell Evolution’, Progress in Photovoltaics Research and Applications, 17.3 (2009), 183–189
[5] Martin A. Green et al., ‘Solar cell efficiency tables (version 38)’, Progress in Photovoltaics Research and Applications, 19.5 (2011), 565–572
[6] Martin A. Green et al., ‘Solar cell efficiency tables (version 39)’, Progress in Photovoltaics Research and Applications, 20.1 (2012), 12–20
[7] Martin A. Green et al., ‘Solar cell efficiency tables (version 47)’, Progress in Photovoltaics Research and Applications, 24.1 (2016), 3–11
[8] Martin A. Green et al., ‘Solar cell efficiency tables (version 49)’, Progress in Photovoltaics Research and Applications, 25.1 (2017), 3–13
[9] W. Shockley and Hans J. Queisser, ‘Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells’, Journal of Applied Physics, 32.3 (1961), 510–519
[10] H.Amano et al., ‘Metalorganic Vapor Phase Epitaxial Growth of a High Quality GaN Film Using an AlN Buffer Layer’, Applied Physics Letters, 48.5 (1986), 353–55
[11] H. Amano et al., ‘P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI)’, Japanese Journal of Applied Physics, 28.Part 2, No. 12 (1989), L2112–14
[12] V. YuDavydov et al., ‘Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap’, Physica Status Solidi (B) Basic Research, 229.3 (2002), 1972–74
[13] G. F.Brown et al., ‘Finite Element Simulations of Compositionally Graded InGaN Solar Cells’, Solar Energy Materials and Solar Cells, 94.3 (2010), 478–83
[14] Omkar Jani et al., ‘Design and Characterization of GaNInGaN Solar Cells’, Applied Physics Letters, 91.13 (2007), 1–4
[15] Craig H.Swartz et al., ‘Demonstration of Nearly Non-Degenerate Electron Conduction in InN Grown by Molecular Beam Epitaxy’, Physica Status Solidi C: Conferences, 2.7 (2005), 2250–53
[16] Junqiao Wu, ‘When Group-III Nitrides Go Infrared: New Properties and Perspectives’, Journal of Applied Physics, 106.1 (2009)
[17] Ugo Lafont, Henk Van Zeijl, and Sybrand Van Der Zwaag, ‘Increasing the Reliability of Solid State Lighting Systems via Self-Healing Approaches: A Review’, Microelectronics Reliability, 52.1 (2012), 71–89
[18] Yosuke Kuwahara et al., ‘Realization of Nitride-Based Solar Cell on Freestanding GaN Substrate’, Applied Physics Express, 3.11 (2010)
[19] C.Tessarek et al., ‘Controlling Morphology and Optical Properties of Self-Catalyzed, Mask-Free GaN Rods and Nanorods by Metal-Organic Vapor Phase Epitaxy’, Journal of Applied Physics, 114.14 (2013)
[20] Robert F.Service, ‘Performance of Nanowire Solar Cells on the Rise’, Science, 339.6117 (2013), 263–263
[21] Jesper Wallentin et al., ‘InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit.’, Science (New York, N.Y.), 339.6123 (2013), 1057–60
[22] Hieu Pham TrungNguyen et al., ‘InN P-I-N Nanowire Solar Cells on Si’, IEEE Journal on Selected Topics in Quantum Electronics, 17.4 (2011), 106–269
[23] 施敏, ‘半導體元件物理與製作技術’, 國立交通大學出版社, (2010)
[24] Hector Cotal et al., ‘III–V Multijunction Solar Cells for Concentrating Photovoltaics’, Energy & Environmental Science, 2.2 (2009), 174
[25] Tomas Markvart, ‘Light Harvesting for Quantum Solar Energy Conversion’, Progress in Quantum Electronics, 24.3 (2000), 107–86
[26] Alan L. Fahrenbruch and Richard H. Bube, ‘Fundamentals of solar cell’, Academic Pr, (1750)
[27] 黃惠良等, ‘太陽能電池’, 五南圖書出版股份有限公司, (2009)
[28] G. Popovici et al., ‘Raman Scattering and Photoluminescence of Mg Doped GaN Films Grown by Molecular Beam Epitaxy’, MRS Proceedings, 468 (1997), 219
[29] Koukitu et al., ‘Porous and Cellular Materials for Structural Applications’, Research Society Symposium Proceedings, 449 (1997), 89
[30] A. G. Bhuiyan et al., ‘InGaN Solar Cells: Present State of the Art and Important Challenges’, IEEE Journal of Photovoltaics, 2.3 (2012), 276–293
[31] Chloe A. M. Fabien et al., ‘Simulations, Practical Limitations, and Novel Growth Technology for InGaN-Based Solar Cells’, IEEE Journal of Photovoltaics, 4.2 (2014), 601–606
[32] J. C. Treece and B. F. Shamee, ‘Detecting cracks in semiconductor solarcells from eddy-current measurements’, NTD International, 23.6 (1990), 357–358
[33] Yuanping Sun et al., ‘Effect of growth interruption on optical properties of In-rich InGaN/GaN single quantum well structures’, Journal of Applied Physics, 100.4 (2006), 043520
[34] G. Popovici et al., ‘Raman Scattering and Photoluminescence of Mg Doped GaN Films Grown by Molecular Beam Epitaxy’, MRS Proceedings, 468 (1997), 219
[35] Hiroshi Harima, ‘Properties of GaN and related compounds studied by means of Raman scattering’, Journal of Applied Physics Condensed Matter, 14 (2002), R967-R993
[36] R. Oliva et al., ‘Raman scattering by the E2h and A1(LO) phonons of InxGa1−xN epilayers (0.25 < x < 0.75) grown by molecular beam epitaxy’, Journal of Applied Physics, 111.6 (2012), 063502
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top