|
[1] A. Fert, V. Cros, J. Sampaio, Skyrmions on the track, Nature Nanotechnol, 8 (2013) 152-156. [2] J. Ding, X. Yang, T. Zhu, Manipulating current induced motion of magnetic skyrmions in the magnetic nanotrack, Journal of Physics D: Applied Physics, 48 (2015) 115004. [3] G. Lawes, M. Kenzelmann, N. Rogado, K. H. Kim, G. A. Jorge, R. J. Cava, A. Aharony, O. Entin-Wohlman, A. B. Harris, T. Yildirim, Q. Z. Huang, S. Park, C. Broholm, A. P. Ramirez, Competing magnetic phases on a kagome staircase, Physical Review Letters, 93 (2004) 247201. [4] K. -y. Ho, T. R. Kirkpatrick, Y. Sang, D. Belitz, Ordered phases of itinerant Dzyaloshinsky-Moriya magnets and their electronic properties, Physical Review B, 82 (2010) 134427. [5] U. K. Rößler, A. A. Leonov, A. N. Bogdanov, Chiral Skyrmionic matter in non-centrosymmetric magnets, Journal of Physics: Conference Series, 303 (2011) 012105. [6] T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism, Physical Review, 120 (1960) 91-98. [7] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Böni, Skyrmion lattice in a chiral magnet, Science, 323 (2009) 915-919. [8] S. Seki, X. Z. Yu, S. Ishiwata, Y. Tokura, Observation of skyrmions in a multiferroic material, Science, 336 (2012) 198-201. [9] W. Münzer, A. Neubauer, T. Adams, S. Mühlbauer, C. Franz, F. Jonietz, R. Georgii, P. Böni, B. Pedersen, M. Schmidt, A. Rosch, C. Pfleiderer, Skyrmion lattice in the doped semiconductorFe1−xCoxSi, Physical Review B, 81 (2010) 041203(R). [10] J. S. White, K. Prsa, P. Huang, A. A. Omrani, I. Zivkovic, M. Bartkowiak, H. Berger, A. Magrez, J. L. Gavilano, G. Nagy, J. Zang, H. M. Ronnow, Electric-field-induced Skyrmion distortion and giant lattice rotation in the magnetoelectric insulator Cu2OSeO3, Physical Review Letters, 113 (2014) 107203. [11] I. Živković, D. Pajić, T. Ivek, H. Berger, Two-step transition in a magnetoelectric ferrimagnet Cu2OSeO3, Physical Review B, 85 (2012) 224402. [12] M. Belesi, I. Rousochatzakis, H. C. Wu, H. Berger, I. V. Shvets, F. Mila, J. P. Ansermet, Ferrimagnetism of the magnetoelectric compound Cu2OSeO3 probed by Se-77 NMR, Physical Review B, 82 (2010) 094422. [13] S. M. Stishov, A. E. Petrova, S. Khasanov, G. K. Panova, A. A. Shikov, J. C. Lashley, D. Wu, T. A. Lograsso, Magnetic phase transition in the itinerant helimagnet MnSi: Thermodynamic and transport properties, Physical Review B, 76 (2007) 052405. [14] K. Shibata, X. Z. Yu, T. Hara, D. Morikawa, N. Kanazawa, K. Kimoto, S. Ishiwata, Y. Matsui, Y. Tokura, Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin-orbit coupling, Nature Nanotechnol, 8 (2013) 723-728. [15] K. Shibata, J. Iwasaki, N. Kanazawa, S. AizawS, T. Tanigaki, M. Shirai, T. Nakajima, M. Kubota, M. Kawasaki, H. S. Park, D. Shindo, N. Nagaosa, Y. Tokura, Large anisotropic deformation of skyrmions in strained crystal, Nature Nanotechnology 10 (2015) 589-592. [16] H. C. Wu, T. Y. Wei, K. D. Chandrasekhar, T. Y. Chen, H. Berger, H. D. Yang, Unexpected observation of splitting of skyrmion phase in Zn doped Cu2OSeO3, Scientific Report, 5 (2015) 13579. [17] V. A. Chizhikov, V. E. Dmitrienko, Microscopic description of twisted magnet Cu2OSeO3, Journal of Magnetism and Magnetic Materials, 382 (2015) 142-151. [18] M. Mochizuki, S. Seki, Dynamical magnetoelectric phenomena of multiferroic skyrmions, Journal of Physics: Condensed Matter, 27 (2015) 503001. [19] J. H. Yang, Z. L. Li, X. Z. Lu, M. H. Whangbo, S. H. Wei, X. G. Gong, H. J. Xiang, Strong Dzyaloshinskii-Moriya interaction and origin of ferroelectricity in Cu2OSeO3, Physical Review Letters, 109 (2012) 107203. [20] S. -W. Cheong, M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity, Nature Materials, 6 (2007) 13-20. [21]W. Eerenstein, N. D. Mathur, J. F. Scott, Multiferroic and magnetoelectric materials, Nature, 442 (2006) 759-765. [22]T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Magnetic control of ferroelectric polarization, Nature, 426 (2003) 55-58. [23]M. Pregelj, A. Zorko, O. Zaharko, P. Jeglič, Z. Kutnjak, Z. Jagličić, S. Jazbec, H. Luetkens, A. D. Hillier, H. Berger, D. Arčon, Physical Review B, 88(2013) 224421. [24]T. Besara, E. S. Choi, K. Y. Choi, P. L. Kuhns, A. P. Reyes, P. Lemmens, H. Berger, N. S. Dalal, Spin dynamics and magnetoelectric properties of the coupled-spin tetrahedral compound Cu2Te2O5Cl2, Physical Review B, 90 (2014) 054418. [25]H. Murakawa, Y. Onose, S. Miyahara, N. Furukawa, Y. Tokura, Ferroelectricity induced by spin-dependent metal-ligand hybridization in Ba2CoGe2O7, Physical Review Letters, 105 (2010) 137202. [26]K. Yamauchi, P. Barone, S. Picozzi, Magnetically driven ferroelectric atomic displacements in orthorhombic YMnO3, Physical Review B, 84 (2011) 054440. [27]S. Nakatsuji, Y. Machida, Y. Maeno, T. Tayama, T. Sakakibara, J. van Duijn, L. Balicas, J. N. Millican, R. T. Macaluso, Julia Y. Chan, Metallic spin-liquid behavior of the geometrically frustrated kondo lattice Pr2Ir2O7, Physical Review Letters, 96 (2006) 087204. [28] K. H. Miller, P. W. Stephens, C. Martin, E. Constable, R. A. Lewis, H. Berger, G. L. Carr, D. B. Tanner, Braiding statistics approach to symmetry-protected topological phases, Physical Review B, 86 (2012) 147104. [29]S. T. Bramwell, M. J. P. Gingras, Spin ice state in frustrated magnetic pyrochlore materials, Science, 294 (2001) 1495-1501. [30] C. P. Sun, C. C. Lin, J. L. Her, C. J. Ho, S. Taran, H. Berger, B. K. Chaudhuri, H. D. Yang, Field-dependent dielectric and magnetic properties in multiferroic CdCr2S4, Physical Review B, 79 (2009) 214116. [31]M. Pregelj, O. Zaharko, A. Günther, A. Loidl, V. Tsurkan, S. Guerrero, Magnetic ground state and two-dimensional behavior in pseudo-kagome layered system Cu3Bi(SeO3)2O2Br, Physical Review B, 86 (2012) 144409. [32]B. Canals, C. Lacroix, Pyrochlore Antiferromagnet: A Three-Dimensional Quantum Spin Liquid, Physical Review Letters, 80 (1998) 2933. [33]H. Martinho, N. O. Moreno, J. A. Sanjurjo, C. Rettori, A. J. García-Adeva, D. L. Huber, S. B. Oseroff, W. Ratcliff, II, S.-W. Cheong, P. G. Pagliuso, J. L. Sarrao, G. B. Martins, Magnetic properties of the frustrated antiferromagnetic spinel ZnCr2O4 and the spin-glass Zn1−xCdxCr2O4 (x = 0.05,0.10), Physical Review B, 64 (2001) 024408. [34]S. T. Bramwell, M. J. P. Gingras, Spin ice state in frustrated magnetic pyrochlore materials, Science, 294 (2001) 1495-1501. [35]X. W. Dong, K. F. Wang, S. J. Luo, J. G. Wan, J. –M. Liu, Coexistence of magnetic and ferroelectric behaviors of pyrochlore Ho2Ti2O7, Journal of Applied Physics, 106 (2009) 104101. [36]Y. Shimikawa, Y. Kubo, T. Manako, Giant magnetoresistance in Ti2Mn2O7 with the pyrochlore structure, Nature, 379 (1996) 53-55. [37]M. Hanawa, Y. Muraoka, T. Tayama, T. Sakakibara, J. Yamaura, Z. Hiroi, Superconductivity at 1 K in Cd2Re2O7, Physical Review Letters, 87 (2001) 187001. [38] M. Nishiyama, A. Oyamada, T. Itou, S. Maegawa, H. Okabe, J. Akimitsu, NMR study of pyrochlore lattice antiferromagnet, melanothallite Cu2OCl2 Journal of Physics: Conference Series, 320 (2011) 012030. [39] H. Okabe, K. Suzuki, K. Kawashima, T. Muranaka, J. Akimitsu, New pyrochlore-like compound Cu2OCl2 with S = 1/2, Journal of the Physical Society of Japan, 75 (2006) 123705. [40] S. Seki, T. Kurumaji, S. Ishiwata, H. Matsui, H. Murakawa, Y. Tokunaga, Y. Kaneko, T. Hasegawa, Y. Tokura, Superconductivity in the iron selenide KxFe2Se2 (0 ≤ x ≤ 1.0), Physical Review B, 82 (2010) 180520(R). [41]L. Zhao, T. L. Hung, C. C. Li, Y. Y. Chen, M. K. Wu, R. K. Kremer, M. G. Banks, A. Simon, M. H. Whangbo, C. Lee, J. S. Kim, I. Kim, K. H. Kim, CuBr2 – A new multiferroic material with high critical temperature, Advanced Materials, 24 (2012) 2469-2473. [42]V. Gnezdilov, Yu. Pashkevich, V. Kurnosov, P. Lemmens, E. Kuznetsova, P. Berdonosov, V. Dolgikh, K. Zakharov, A. Vasiliev, Longitudinal magnon, inversion breaking and magnetic instabilities in the pseudo-Kagome francisites Cu3Bi(SeO3)2O2X with X=Br, Cl, arXiv:1604.04249 [43] P. Millet, B. Bastide, V. Pashchenko, S. Gnatchenko, V. Gapon, Y. Ksarid, A. Stepanovd, Syntheses, crystal structures and magneticproperties of francisite compounds Cu3Bi(SeO3)2O2X (X = Cl, Br and I), Journal of Materials Chemistry, 11 (2001) 1152. [44]M. Pregelj, O. Zaharko, A. Günther, A. Loidl, V. Tsurkan, S. Guerrero, Magnetic ground state and two-dimensional behavior in pseudo-kagome layered system Cu3Bi(SeO3)2O2Br, Physical Review B, 86 (2012) 144409. [45] M. K. Wu, Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure, Physical Review Letters, 58 (1987) 908-910. [46] H. A. Mook, P. Dai, F. Doğan, Charge and Spin Structure in YBa2Cu3O6.35, Physical Review Letters, 88 (2002) 097004. [47] M. Matsuda, Electronic phase separation in lightly doped La2−xSrxCuO4, Physical Review B, 65 (2002) 134515. [48] M. A. Kastner, R. J. Birgeneau, G. Shirane, Y. Endoh, Magnetic, transport, and optical properties of monolayer copper oxides, Reviews of Modern Physics, 70 (1998) 897-928. [49] T. Kimura, Y. Sekio, H. Nakamura, T. Siegrist, A. P. Ramirez, Cupric oxide as an induced-multiferroic with high-TC, Nature Materials, 7 (2008) 291-294. [50] G. Xiao, High-temperature superconductivity in tetragonal perovskite structures: Is oxygen-vacancy order important?, Physical Review Letters, 60 (1988) 1446-1449. [51] J. -W.G. Bos, C. V. Colin, T. T. M. Palstra, Magnetoelectric coupling in the cubic ferrimagnet Cu2OSeO3, Physical Review B, 78 (2008) 094416. [52] M. C. Langner, Coupled Skyrmion Sublattices in Cu2OSeO3, Physical Review Letters, 112 (2014) 167202. [53] C. L. Huang, K. F. Tseng, C. C. Chou, S. Mukherjee, J. L. Her, Y. H. Matsuda, K. Kindo, H. Berger, H. D. Yang, Observation of a second metastable spin-ordered state in ferrimagnet Cu2OSeO3, Physical Review B, 83 (2011) 052402. [54] V. A. Sidorov, A. E. Petrova, P. S. Berdonosov, V. A. Dolgikh, S. M. Stishov, Comparative study of helimagnets MnSi and Cu2OSeO3 at high pressures, Physical Review B, 89 (2014) 100403. [55] Z. Wang, N. Qureshi, S. Yasin, A. Mukhin, E. Ressouche, S. Zherlitsyn, Y. Skourski, J. Geshev, V. Ivanov, M. Gospodinov, V. Skumryev, Magnetoelectric effect and phase transitions in CuO in external magnetic fields, Nature Communications, 7 (2016) 10295. [56]S. H. Chun, Y. S. Chai, B.-G. Jeon, H. J. Kim, Y. S. Oh, I. Kim, H. Kim, B. J. Jeon, S. Y. Haam, J.-Y. Park, S. H. Lee, J.-H. Chung, J.-H. Park, K. H. Kim, Electric field control of nonvolatile four-state magnetization at room temperature, Physical Review Letters, 108 (2012) 177201. [57]Y. Tokunaga, S. Iguchi, T. Arima, Y. Tokura, Magnetic-field-induced ferroelectric state in DyFeO3, Physical Review Letters, 101 (2008) 097205. [58]J. Hwang, E. S. Choi, H. D. Zhou, J. Lu, P. Schlottmann, Magnetoelectric effect in NdCrTiO5, Physical Review B, 85 (2012) 024415. [59] B. K. Teo, Exafs: Basic Principles And Data Analysis, (1986). [60] I. Zivkovic, J. S. White, H. M. Ronnow, K. Prsa, H. Berger, Critical scaling in the cubic helimagnet Cu2OSeO3, Physical Review B, 89 (2014) 060401(R). [61] A. Bauer, C. Pfleiderer, Magnetic phase diagram of MnSi inferred from magnetization and ac susceptibility, Physical Review B, 85 (2012) 214418. [62] T. Adams, A. Chacon, M. Wagner, A. Bauer, G. Brandl, B. Pedersen, H. Berger, P. Lemmens, C. Pfleiderer, Long-wavelength helimagnetic order and skyrmion lattice phase in Cu2OSeO3, Physical Review Letters, 108 (2012) 237204. [63] A. Bauer, Quantum phase transitions in single-crystal Mn1−xFexSi and Mn1−xCoxSi: Crystal growth, magnetization, ac susceptibility, and specific heat, Physical Review B, 82 (2010) 064404. [64] J. B. Goodenough, Magnetism And The Chemical Bond, (1963). [65] V. P. Gnezdilov, Magnetoelectricity in the ferrimagnetic Cu2OSeO3: symmetry analysis and Raman scattering study, Low Temperature Physics, 36 (2010) 550-557. [66] O. Janson, The quantum nature of skyrmions and half-skyrmions in Cu2OSeO3, Nature Communications, 5 (2014) 5376. [67] K. E. R. Marriott, L. Bhaskaran, C. Wilson, M. Medarde, S. T. Ochsenbein, S. Hill, M. Murrie, Pushing the limits of magnetic anisotropy in trigonal bipyramidal Ni (ii), Chemical Science, 6 (2015) 6823-6828. [68] M. Gruden-Pavlovic, M. Peric, M. Zlatar, P. Garcia-Fernandez, Theoretical study of the magnetic anisotropy and magnetic tunnelling in mononuclear Ni (ii) complexes with potential molecular magnet behavior, Chemical Science, 5 (2014) 1453-1462. [69] I. B. Bersuker, Pseudo-Jahn–Teller effect—A two-state paradigm in formation, deformation, and transformation of molecular systems and solids, Chemical Reviews, 113 (2013) 1351-1390. [70] S. X. Huang, C. L. Chien, Extended skyrmion phase in epitaxial Fe (111) thin films, Physical Review Letters, 108 (2012) 267201. [71] P. Chu, Real-space anisotropic dielectric response in a multiferroic skyrmion lattice, Scientific Report, 5 (2015) 8318. [72] S. Seki, S. Ishiwata, Y. Tokura, Magnetoelectric nature of skyrmions in a chiral magnetic insulator Cu2OSeO3, Physical Review B, 86 (2012) 060403. [73] C. Jia, S. Onoda, N. Nagaosa, J. H. Han, Microscopic theory of spin-polarization coupling in multiferroic transition metal oxides, Physical Review B, 76 (2007) 144424. [74] H. C. Wu, K. D. Chandrasekhar, T. Y. Wei, K. J. Hsieh, T. Y. Chen, H. Berger, H. D. Yang, Physical pressure and chemical expansion effects on the skyrmion phase in Cu2OSeO3, Journal of Physics D: Applied Physics, 48 (2015) 475001. [75] M. I. Kobets, K. G. Dergachev, E. N. Khatsko, A. I. Rykova, P. Lemmens, D. Wulferding, H. Berger, Microwave absorption in the frustrated ferrimagnet Cu2OSeO3, Low Temperature Physics, 36 (2010) 176. [76] M. Janoschek, M. Garst, A. Bauer, P. Krautscheid, R. Georgii, P. Böni, C. Pfleiderer, Fluctuation-induced first-order phase transition in Dzyaloshinskii-Moriya helimagnets, Physical Review B, 87 (2013). [77]H. Okabe, K. Suzuki, K. Kawashima, T. Muranaka, J. Akimitsu, New Pyrochlore-like compound Cu2OCl2 with S=1/2, Journal of the Physical Society of Japan, 75 (2006) 123705. [78]M. Elhajal, B. Canals, R. Sunyer, C. Lacroix, Ordering in the pyrochlore antiferromagnet due to Dzyaloshinsky-Moriya interactions, Physical Review B, 71 (2005) 094420. [79]M. Nishiyama, A. Oyamada, T. Itou, S. Maegawa, H. Okabe, J. Akimitsu, NMR study of pyrochlore lattice antiferromagnet, melanothallite Cu2OCl2, Journal of Physics: Conference Series, 320 (2011) 012030. [80] K. H. Miller, P. W. Stephens, C. Martin, E. Constable, R. A. Lewis, H. Berger, G. L. Carr, D. B. Tanner, Infrared phonon anomaly and magnetic excitations in single-crystal Cu3Bi(SeO3)2O2Cl, Physical Review B, 86 (2012) 147104. [81] M. Pregelj, O. Zaharko, A. Günther, A. Loidl, V. Tsurkan, S. Guerrero, Magnetic ground state and two-dimensional behavior in pseudo-kagome layered system Cu3Bi(SeO3)2O2Br, Physical Review B, 86 (2012) 144409. [82] A. Bauer, M. Garst, C. Pfleiderer, Specific heat of the skyrmion lattice phase and field-induced tricritical point in MnSi, Physical Review Letters, 110 (2013) 177207. [83] V. Hardy, A. Wahl, C. Martin, Ch. Simon, Low-temperature specific heat in Pr0.63Ca0.37MnO3: Phase separation and metamagnetic transition, Physical Review B, 63 (2001) 224403. [84] J. Krishna Murthy, K. D. Chandrasekhar, H. C. Wu, H. D. Yang, J. Y. Lin, A. Venimadhav, Metamagnetic behaviour and effect of field cooling on sharp magnetization jumps in multiferroic Y2CoMnO6, Europhysics Letters, 108 (2014) 27013. [85] D. S. Rana, S. K. Malik, Magnetic avalanchelike behavior in the disordered manganite (Eu0.4La0.1)(Sr0.4Ca0.1)MnO3, Physical Review B, 74 (2006) 052407. [86] Y. Wang, G. L. Pascut, B. G, T. A. Tyson, K. Haule, V. Kiryukhin, S.-W. Cheong, Unveiling hidden ferrimagnetism and giant magnetoelectricity in polar magnet Fe2Mo3O8, Scientific Report, 5 (2015) 12268. [87] I. Rousochatzakis, J. Richter, R. Zinke, A. A. Tsirlin, Frustration and Dzyaloshinsky-Moriya anisotropy in the kagome francisites, Physical Review B, 91 (2015) 024416. [88] H. C. Wu et al, Anisotropic spin-flip induced multiferroic behavior in kagome Cu3Bi(SeO3)2O2Cl, unpublished. [89] K. V. Zakharov, E. A. Zvereva, P. S. Berdonosov, E. S. Kuznetsova, V. A. Dolgikh, L. Clark, C. Black, P. Lightfoot, W. Kockelmann, Z. V. Pchelkina, S. V. Streltsov, O. S. Volkova, A. N. Vasiliev, Thermodynamic properties, electron spin resonance, and underlying spin model in Cu3Y(SeO3)2O2Cl, Physical Review B, 90 (2014) 214417. [90] K. V. Zakharov, E. A. Zvereva, E. S. Kuznetsova, P. S. Berdonosov, V. A. Dolgikh, M. M. Markina, A. V. Olenev, A. A. Shakin, O. S. Volkova, A. N. Vasiliev, Two new lanthanide members of francisite family Cu3Ln(SeO3)2O2Cl (Ln = Eu, Lu), Journal of alloys and compounds, 685 (2016) 442-447. [91] M. M. Markina, K. V. Zakharov, E. A. Zvereva, R. S. Denisov, P. S. Berdonosov, V. A. Dolgikh, E. S. Kuznetsova, A. V. Olenev, A. N. Vasiliev, Static and dynamic magnetic properties of two synthetic francisites Cu3La(SeO3)2O2X (X = Br and Cl), Physics and Chemistry of Minerals, (2016) 1-9. [92] K. V. Zakharov, E. A. Zvereva, M. M. Markina, M. I. Stratan, E. S. Kuznetsova, S. F. Dunaev, P. S. Berdonosov, V. A. Dolgikh, A. V. Olenev, S. A. Klimin, L. S. Mazaev, M. A. Kashchenko, M. A. Ahmed, A. Banerjee, S. Bandyopadhyay, A. Iqbal, B. Rahaman, T. Saha-Dasgupta, A. N. Vasiliev, Magnetic, resonance, and optical properties of Cu3Sm(SeO3)2O2Cl: A rare-earth francisite compound, Physical Review B, 94 (2016) 054401. [93] P. Millet, B. Bastide, V. Pashchenko, S. Gnatchenko, V. Gapon, Y. Ksari, A. Stepanov, Syntheses, crystal structures and magnetic properties of francisite compounds Cu3Bi(SeO3)2O2X (X = Cl, Br and I), Journal of Materials Chemistry, 11 (2001) 1152-1157. [94] R. Becker, M. Johnsson, Crystal structure of Cu3Bi(TeO3)2O2Cl: a Kagome lattice type compound, Solid State Sciences, 7 (2005) 375-380. [95] W. Geertsma and D. Khomskii, Influence of side groups on 90o superexchange: A modification of the Goodenough-Kanamori-Anderson rules, Physical Review B, 54 (1996) 3011-3014. [96] J. B. Goodenough, Magnetism and the chemical bond, Interscience Publishers, (1963). [97] S. A. Nikolaev, V. V. Mazurenko, A. A. Tsirlin, V. G. Mazurenko, First-principles study of the magnetic ground state and magnetization process of the kagome francisitesCu3Bi(SeO3)2O2X(X=Cl,Br), Physical Review B, 94 (2016) 144412. [98] Y. Tokunaga, X. Z. Yu, J. S. White, H. M. Rønnow, D. Morikawa, Y. Taguchi, Y. Tokura, Altmetric: A new class of chiral materials hosting magnetic skyrmions beyond room temperature, Nature Communications, 6 (2015) 7638. [99] I. Kézsmárki, S. Bordács, P. Milde, E. Neuber, L. M. Eng, J. S. White, H. M. Rønnow, C. D. Dewhurst, M. Mochizuki, K. Yanai, H. Nakamura, D. Ehlers, V. Tsurkan, A. Loidl, Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8, Nature Materials, 14 (2015) 1116–1122. [100] J. S. White, I. Levatić, A. A. Omrani, N. Egetenmeyer, K. Prša, I. Živković, J. L. Gavilano, J. Kohlbrecher, M. Bartkowiak, H. Berger, H. M. Rønnow, Electric field control of the skyrmion lattice in Cu2OSeO3, Journal of Physics: Condensed Matter, 24 (2012) 43.
|