跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/07 23:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:余佩珊
研究生(外文):Pei-Shan Yu
論文名稱:臺灣西南海域日本眼眶牛尾魚生殖、年齡與成長之研究
論文名稱(外文):Study on reproduction, age and growth of Inegocia japonica in Waters off Southwestern Taiwan
指導教授:陳孟仙陳孟仙引用關係張至維張至維引用關係
指導教授(外文):Meng-Hsien ChenChih-Wei Chang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋科學系研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:86
中文關鍵詞:底棲魚類牛尾魚科副熱帶海域生殖生物學性轉變耳石年齡
外文關鍵詞:ReproductionSex changeOtolithAge and growthBenthic fishPlatycephalidaeSubtropical ocean
相關次數:
  • 被引用被引用:0
  • 點閱點閱:270
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本研究為首篇針對臺灣西南沿海之日本眼眶牛尾魚 (Inegocia japonica) 生活 史所進行的研究,以了解其生殖策略及年齡成長,並討論有利於此魚種生存優勢 等生活史特徵。本研究自 2012 年 1 月起至 2013 年 4 月及 2015 年 1 月,每月 3–5 次、每月於蚵仔寮及東港魚市場合計購買樣本約 100 尾,共採集雌魚 701 尾 (體長 (LT) 範圍 15.4–28.2 公分)、雄魚 619 尾 (12.8–25.4 公分) 及無法以性腺外觀判斷性
別者,共 237 尾 (10.2–25.4 公分)。總樣本數量共 1557 尾,體長帄均值 (±SD)20.4±2.8 公分。

每年 1–4 月臺灣西南海域水溫上升,正為日本眼眶牛尾魚的生值高峰季。本 研究透過 GSI 值及組織切片發現,不同於生活在溫帶海域 (如日本) 的族群,臺灣 西南海域的日本眼眶牛尾魚卵巢為非同步發育,生殖季涵蓋全年,他們於出生後 第一年即達性成熟;雌、雄魚最小性成熟體長為 16.6 及 15.0 公分,50% 的雌魚性 成熟體長為帄均 15.4 公分。日本眼眶牛尾魚 (n = 7) 最成熟群卵徑頻度峰之帄均 孕卵數 (±SD) 達 83,442 (±36,619) 粒/尾,包含不同發育階段的卵細胞。組織學結 果顯示,日本眼眶牛尾魚全年皆有先雄後雌的性轉變現象;本研究進一步發現, 此時的他們仍扮演著生殖雄性 (function-male) 的角色;雄魚排精後,卵巢後繼成 熟、準備下一次產卵季的到來。正值雌雄同體時期的性腺和精巢難以外觀正確區 分,比對組織切片可發現其外觀血管較雄魚明顯且為粉紅色,並且同時存在發育 較成熟的精巢及未成熟的卵巢。除明確訂定分辨雄性與雌雄同體個體外,亦依下 列特性:(1) 日本眼眶牛尾魚為先雄後雌、(2) 此階段魚體為生殖雄性,且 (3) 雌 魚有 90% 以上可由性腺外觀正確和雄魚及性轉變個體區分,提出將先雄後雌性轉 變個體列入雄魚數量計算,和雌魚明確區分,以便於各數值統計與計算。
10–12 月為臺灣秓冬之際,西南海域水溫下降,此時日本眼眶牛尾魚耳石上形 成一道道年生輪紋帶,紀錄其生命歷時;本篇以耳石為年齡形質,以 von Bertanlanffy
成長方程式模擬,首次研究臺灣西南沿海之日本眼眶牛尾魚之成長,並與過往針 對溫帶海域的牛尾魚科之文獻比較,發現其為壽命短 (帄均 2.5±0.8 歲,最大年齡 僅 4 歲) 且成長快速 (成長速率為 0.76 /年) 之魚種。
This study investigated life-history traits of the Japanese flathead, Inegocia japonica, inhabiting the waters off southwestern Taiwan. A total of 1,557 I. Japonica specimens (701 females, 619 males, and 237 individuals of unknown sex) were collected in the fish markets of Keziliao and Donggang during the period from January 2012 to April 2013 and in January 2015. The size (total length, TL) of specimens ranged from 15.4 to 28.2 cm for females, and the size from 12.8 and 25.4 cm for males. For the sex-unknown specimens, their TLs ranged from 10.2 to 25.4 cm.
Seawater temperature is suggested to be an important environmental factor affecting the reproduction of I. japonica. The investigations of gonodo-somatic indices (GSIs) and histological sections of ovaries indicated that the I. japonica population inhabiting in waters off southwestern Taiwan spawns year around with a peak spawning period from January to April. The average fecundity was 83,442 (±36,619) eggs, estimated by counting the numbers of oocytes in the most advanced size group from the ovary samples of seven mature females. The smallest TLs at sexual maturity were 16.6 cm (0.7 years) for females and 15.0 cm (0.36 years) for males. Hermaphroditic individuals undergoing sex change were difficult to be properly separated from males through naked eye examination of gonad appearances. Based on histological examination of gonad samples, this study found that hermaphroditic individuals, which had pink color and more visible blood vessels in the appearance of gonads, produce male function.
Ages, revealed by otolith interpretation, of I. japonica ranged from 0.5 to 4.5 years.

The otolith ring, analyzed by marginal increment, formed annually during the period from October to December (autumn and winter). Compared with other species of Platycephalidae, I. japonica exhibits a short-lived species (mean age: 2.5±0.8 years) with a fast growth rate (0.76 year−1).
目錄
謝辭 i
摘要 ii
Abstract iv
目錄 vi
表目錄 ix
圖目錄 x
一、前言 1
1.1 日本眼眶牛尾魚簡介 1
1.2 牛尾魚科的生殖生物學研究 1
1.3 耳石的應用與研究 2
1.4 魚類的性轉變 3
1.5 研究動機及目的 4
二、研究材料與方法 6
2.1 樣品來源 6
2.2 樣本鑑定 6
2.3 基本生物學 6
2.3.1 體長頻度分布 7
2.3.2 體長體重關係式 7
2.3.3 肝指數 7
2.3.4 攝食強度 7
2.3.5 肥滿度 7
2.4 生殖生物學 8
2.4.1 性別判斷、月別樣本數量頻度分布與性比 8
2.4.2 性腺指數月別變化 8

2.4.3 生殖組織切片處理流程 9
2.4.4 最小性成熟體長與 50% 性成熟體長 9
2.4.5 卵徑頻度分布 10
2.4.6 總孕卵數及最成熟群卵徑峰之孕卵數 10
2.5 年齡成長 10
2.5.1 耳石切片處理流程 10
2.5.2 年齡判讀 11
2.5.3 年齡驗證 12
2.5.4 成長模式估算 12
2.6 資料統計分析 12
三、結果 14
3.1 基本生物學 14
3.1.1 體長頻度分布 14
3.1.2 體長體重關係式 14
3.1.3 肝指數 14
3.1.4 攝食強度 15
3.1.5 肥滿度 15
3.2 生殖生物學 15
3.2.1 月別樣本數量頻度分布與性比 15
3.2.3 性腺指數月別變化 16
3.2.4 卵細胞發育分期 16
3.2.5 精細胞發育分期 17
3.2.6 性腺成熟期分期 17
3.2.7 精巢、卵巢、性轉變性腺成熟比例之月別變化 19
3.2.8 最小性成熟體長與 50%成熟體長 19
3.2.9 卵徑頻度分布 20
3.2.10 總孕卵數及最成熟群卵徑頻度峰所估計之孕卵數 20
3.3 年齡成長 21
3.3.1 年齡判讀 21
3.3.3 年齡論證 21
3.3.4 成長解析 22
四、討論 23
4.1 生殖期及生殖模式 23
4.2 耳石輪紋判讀 24
4.3 年齡成長 25
4.4 性別誤判率與性轉變 26
4.5 日本眼眶牛尾魚與印度牛尾魚 27
六、參考文獻 29

表目錄
表 1 以性腺組織外觀判斷日本眼眶牛尾魚 (I. japonica) 雌、雄及性別未確定者之 依據及其切片對照圖 35
表 2 日本眼眶牛尾魚 (I. japonica) 月份別性比分布,以卡方統計之結果 37
表 3 日本眼眶牛尾魚 (I. japonica) 體長別性比分布,以卡方統計之結果 38
表 4 牛尾魚科生殖生物學研究 39
表 5 日本眼眶牛尾魚 (I. japonica) 性別誤判率 40
表 6 牛尾魚科年齡成長研究 41

圖目錄
圖 1 日本眼眶牛尾魚 (I. japonica) 外部形態 43
圖 2 日本眼眶牛尾魚 (I. japonica) 樣本來源 44
圖 3 日本眼眶牛尾魚 (I. japonica) 體長頻度分布及性比 45
圖 4 本研究日本眼眶牛尾魚 (I. japonica) 樣本處理流程圖 46
圖 5 日本眼眶牛尾魚 (I. japonica) 雌、雄魚體長體重關係式 47
圖 6 日本眼眶牛尾魚 (I. japonica) 全長和標準體長關係方程式 48
圖 7 日本眼眶牛尾魚 (I. japonica) 的肝指數 (HSI) 月別變化 49
圖 8 日本眼眶牛尾魚 (I. japonica) 的攝食強度 (DSI) 49
圖 9 日本眼眶牛尾魚 (I. japonica) 的肥滿度 (K) 50
圖 10 日本眼眶牛尾魚 (I. japonica) 月份頻度分布及性比 51
圖 11 日本眼眶牛尾魚 (I. japonica) (a) 雌、(b) 雄別 GSI 值月別變化 52
圖 12 日本眼眶牛尾魚 (I. japonica) 卵細胞發育分期 53
圖 13 日本眼眶牛尾魚 (I. japonica) 精細胞發育分期 55
圖 14 日本眼眶牛尾魚 (I. japonica) 性腺成熟分期-卵巢 56
圖 15 日本眼眶牛尾魚 (I. japonica) 性腺成熟分期-精巢 57
圖 16 日本眼眶牛尾魚 (I. japonica) 性腺成熟分期-性轉變 58
圖 17 日本眼眶牛尾魚 (I. japonica) 性腺成熟之月別變化 59
圖 18 日本眼眶牛尾魚 (I. japonica) 最小性成熟體長 61
圖 19 日本眼眶牛尾魚 (I. japonica) 雌魚 50% 個體達性成熟體長 62
圖 20 日本眼眶牛尾魚 (I. japonica) 卵徑頻度分布 63
圖 21 日本眼眶牛尾魚 (I. japonica) 總孕卵數和 (a) 魚體體長、(b) 魚體全重的關 係 64
圖 22 日本眼眶牛尾魚 (I. japonica) 耳石 (矢狀石,saggita) 外部形態 66
圖 23 日本眼眶牛尾魚 (I. japonica) 體長與耳石全長之關係 67
圖 24 日本眼眶牛尾魚 (I. japonica) 體長與耳石重量之關係 67
圖 25 日本眼眶牛尾魚 (I. japonica) 耳石輪紋判讀試驗 68
圖 26 日本眼眶牛尾魚 (I. japonica) 耳石輪紋判讀 69
圖 27 日本眼眶牛尾魚 (I. japonica) 耳石輪紋頻度分析 70
圖 28 日本眼眶牛尾魚 (I. japonica) 耳石邊緣成長率 (MIR) 71
圖 29 日本眼眶牛尾魚 (I. japonica) 之范式成長方程式 72
圖 30 表層海溫統計資料 (SST, Sea surface temperature) 73
王律棚 (2007)。臺灣疊波蓋刺魚之生活史研究。碩士論文,海洋生物多樣性及 演化研究所,國立東華大學,共 72 頁。
高瑩懿 (2014)。臺灣西南海域印度牛尾魚 (Platcyphalus indicus) 之生殖生物學 研究。碩士論文,海洋事務研究所,國立中山大學,共 64 頁。
黃千治 (2007)。臺灣西南海域牛尾魚科魚類之時空分布及大棘大眼牛尾魚生物 學之研究。碩士論文,海洋生物科技暨資源研究所,國立中山大學,共 93 頁。
潘儀庭 (2006)。臺灣西南沿海魚銜科魚類之時空分布及生殖研究。碩士論文,海 洋生物科技暨資源研究所,國立中山大學,共 166 頁。
Agüera, A. & Brophy, D. (2011). Use of saggital shape analysis to discriminate Northeast Atlantic and Western Mediterranean stocks of Atlantic saury, Scomberesox saurus saurus (Walbaum). Fisheries Research, 110, 465–471.
Aoyama, T., Kitajima, C., & Mizue, K. (1963). Study of the sex reversal of inegochi, Cociella crocodila (Tilesius). Bulletin of the Seikai Regional Fisheries Research Laboratories, 29, 11-33.
Barnes, L. M., Gray, C. A., & Williamson, J. E. (2011). Divergence of the growth characteristics and longevity of coexisting Platycephalidae (Pisces). Marine and Freshwater Research, 62, 1308–1317.
Beamish, R. J. & Fournier, D. A. (1981). A method for comparing the precision of a
set of age determinations. Canadian Journal of Fisheries and Aquatic Sciences, 38, 982–983.
Brown-Peterson N. J., Peterson M. S., Nieland D. L., Murphy M. D., Taylor R. G., & Warren J. R. (2002). Reproductive biology of female spotted seatrout, Cynoscion nebulosus, in the Gulf of Mexico: differences among estuaries? Environmental Biology of Fishes, 63, 405–415.
Brown-Peterson, N. J., Wyanskl, D. M., Saborido-Rey, F., Macewicz, B. J., & Lowerre-Barbieri, S.K. (2011). A standard terminology for describing reproductive development in fishes. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science, 3, 52–70.
Caldow, C., & Wellington, G. M. (2003). Patterns of annual increment formation in otoliths of pomacentrids in the tropical western Atlantic: implications for population age-structure examination. Marine Ecology Progress Series, 265, 185–195.
Chang, W. Y. B. (1982). A statistical method for evaluating the reproducibility of age determination. Canadian Journal of Fisheries and Aquatic Sciences, 39, 1208– 1210.
Chen, K. S., Shimose, T., Tanabe, T., Chen, C. Y, & Hsu, C. C. (2012). Age and growth of albacore Thunnus alalunga in the North Pacific Ocean. Journal of Fish Biology, 80, 2328–2344.
Corriero, A., Desantis, S., Deflorio, M., Acone, F., Bridges, C. R., Serna, J. M. dela, Megalofonou, P., & Metrio, G. de (2003). Histological investigation on the ovarian cycle of the bluefin tuna in the western and central Mediterranean.
Journal of Fish Biology, 63, 108–119.
Coulson, P. G., Black, B. A., Potter, I. C, & Hall, N. G. (2014). Sclerochronological studies reveal that pattern of otolith growth of adults of two co-occurring species of Platycephalidae are synchronised by water temperature variations. Marine Biology, 161, 383–393.
Dawson, W. A. (1991). Otolith measurement as a method of identifying factors affecting first-year growth and stock separation of mackerel (Scomber scombrus L.). Journal of Marine Science, 3, 303–317.
Fowler, A. J. (1995). Annulus formation in otoliths of coral reef fish: a review. Recent Developments in Fish Otolith Research, 45–63.
Fujii T. (1970). Hermaphorditism and sex reversal in fishes of the Platycephalidae–I. Sex reversal of Onigocia macrolepis. Japanese Journal of Ichthyology, 17, 14– 21.
Fujii T. (1971). Hermaphorditism and sex reversal in fishes of the Platycephalidae–II. Kumococius detrusus and Inegocia japonica. Japanese Journal of Ichthyology, 18, 109–117.
Fujii T. (1974). Hermaphorditism and sex reversal in fishes of the Platycephalidae–III.
Variation in the mode of sex reversal and speciation. Japanese Journal of Ichthyology, 21, 92–100.
Ghiselin, M. T. (1969). The evolution of hermaphroditism among animals. The Quarterly Review of Biology, 44, 189–208.
Gray, C. A., Gale, V. J., Stringfellow, S. L., & Raines L. P. (2002). Variations in sex, length and age compositions of commercial catches of Platycephalus fuscus (Pisces: Platycephalidae) in New South Wales, Australia. Marine and Freshwater Research, 53, 1091–1100.
Hattori, A., & Yanagisawa, Y. (1991). Life-history pathways in relation to gonadal sex differentiation in the anemonefish, Amphiprion clarkii, in temperate waters of Japan. Environmental Biology of Fishes, 31, 139–155.
Hutchings. K., & Griffiths, M. H. (2010). Life-history strategies of Umbrina robinsoni (Sciaenidae) in warm-temperate and subtropical South African marine reserves.Africa Journal of Marine Science, 32, 37–53.
Hyndes, G. A., Loneragan, N. R., & Potter, I. C. (1992). Influence of sectioning otoliths on marginal increment trends and age and growth estimates for the flathead Platycephalus speculator. Fishery Bulletin, 90, 276–284.
King, M. (2007). Fisheries biology, assessment and management (2nd ed.). London:Blackwell Publisher.
Licandeo, R. R., Barrientos, C. A., & González, M. T. (2006). Age, growth rates, sex change and feeding habits of notothenioid fish Eleginops maclovinus from the central-southern Chilean coast. Environmental Biology of Fishes, 77, 51–61.
Lloret, J., Gil de Sola, L., Souplet, A., & Galzin, R. (2002). Effect of large-scale habitat variability on condition of demersal exploited fish in the northern-western Mediterranean. ICES Journal of Marine Science, 59, 1215–1227.
Lowerre-Barbieri, S. K., Brown-Peterson, N. J., Murua, H., Tomkiewicz, J., Wyanski,D. M., & Saborido-Rey, F. (2011) a. Emerging issues and methodological advances in fisheries reproductive biology. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science, 3, 32–35.
Lowerre-Barbieri, S. K., Ganias, K., Saborido-Rey, F., Murua, H., & Hunter, J. R. (2011) b. Reproductive timing in marine fishes: variability, temporal scales, and methods. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science, 3, 71–91.
Masuda, Y., Ozawa, T., Onoue, O., & Hamada, T. (2000). Age and growth of the flathead, Platycephalus indicus, from the coastal waters of west Kyushu, Japan. Fisheries Research, 46, 113–121
Morales-Nin, B., & Panfili, J. (2005). Seasonality in the deep sea and tropics revisited: what can otoliths tell us? Marine and Freshwater Research, 56, 585–598.
Morrongiello, J. R., & Thresher, R. E. (2011). A statistical framework to explore ontogenetic growth variation among individuals and population: a marine fish example. Ecological Monographs, 85 (1), 93–115.
Munday, P. L., Ryen, C. A., McCormick, M. I., & Walker, S. P. W. (2009). Growth acceleration, behavior and otolith check marks associated with sex change in the wrasse Halichoeres miniatus. Coral Reefs, 28, 623–634.
Nieland, D. L., Thomas, R. G., & Wilson C. A. (2002). Age, growth, and reproduction of spotted seatrout in Barataria Bay, Louisiana. Transactions of the American Fisheries Society, 131, 245–259.
Nikolsky, G.V. (1978). The ecology of fishes (2nd ed.). Neptune: TFH Publisher.
Nõges, P., & Järvet, A. (2005). Climate driven changes in the spawning of roach (Rutilus rutilus (L.)) and bream (Abramis brama (L.)) in the Estonian part of the Narva River basin. Boreal Environment Research, 10, 45–55.
Parker, G. A. (1992). The evolution of sexual size dimorphism in fish. Journal of Fish Biology, 41, 1–20.
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., & Wang, W. (2002). An improved in situ and satellite SST analysis for climate. Journal of Climate, 15, 1609–1625.
Sadovy de Mitcheson, Y., & Liu, M. (2008). Functional hermaphroditism in teleosts.Fish and Fisheries, 9, 1–43.
Shinomiya, A., Yamada, M., & Sunobe, T. (2003). Mating system and protandrous sex change in the lizard flathead, Inegocia japonica (Platycephalidae).Ichthyological Research, 50, 383–386.
Ye, Z. J., Zhang, C., Panhwar, S. K., Li, Z. G., & Wan, R. (2015). Ageing Belanger’s croaker, Johnius belangerii (Cuvier, 1830), based on otolith shape analysis.Journal of Applied Ichthyology, 31, 27–31.
Yogo, Y. (1987). Hermaphroditism and the evolutionary aspects of its occurrences in fishes. Sex change in fishes. Tokai University Press, Tokyo, 1–47.
Zar, J. H. (1999). Biostatistical Analysis (4th ed.). New Jersey: Prentice Hall.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊