跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/12 22:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭宜婷
研究生(外文):Yi-Ting Cheng
論文名稱:全球超級颱風所引起的中尺度氣旋渦
論文名稱(外文):Cyclonic Eddies Induced by Global Super typhoons
指導教授:曾若玄曾若玄引用關係
指導教授(外文):Ruo-Shan Tseng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋科學系研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:110
中文關鍵詞:表面漂流浮球絕對地轉流海平面高度中尺度氣旋渦超級颱風
外文關鍵詞:drifterabsolute geostrophic velocitysea surface heightmesoscale cyclonic eddysuper typhoon
相關次數:
  • 被引用被引用:1
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
Geisler (1970) 的經典理論提出,當熱帶氣旋行進速度Uh小於該區域海洋第一斜壓模的相位速度c1時 (Uh < c1,slow-moving),其暴風中心下方主要的海洋反應為湧升流現象,本研究根據此論點做為出發點,探討1993-2015年間,全球slow-moving型態的超級颱風其底下的海流流況,且以表面漂流浮球資料、AVISO之海平面高度 (SSH) 與絕對地轉流 (AGV) 資料來呈現。
觀測期間資料發現全球共有22個超級颱風符合slow-moving型態,其中有7個超級颱風 (北半球3個;南半球4個) 所經過的區域有中尺度氣旋渦產生 (或被增強)。這些超級颱風皆有三個共通點:【1】其資料點平均行進速度小於2 m/s,【2】slow-moving型態皆維持有12小時以上,【3】皆位於開放性大洋 (無行經陸地)。這些中尺度氣旋渦的最大流速達到2 m/s,並隨著背景流向西方傳遞,最短維持1個月,最久存活8個月才消失。以颱風中尺度氣旋渦和北太平洋副熱帶逆流區(STCC)之中尺度氣旋渦相比,前者的生存時間約為後者的1.3倍,平均半徑約為1.0~1.8倍,渦漩動能約為3~16倍,而平均流速約為1.1~1.8倍。。
表面漂流浮球被捲入中尺度氣旋渦中時,顯示表水溫度下降約攝氏2.5~3.5度。由全球溫鹽剖面資料庫 (GTSPP) 提供的海水溫度資料可知,當超級颱風Nida以緩慢的移動速度經過研究海域,混合層加厚約30米;而Nida消失後,氣旋渦結構增強且穩固,湧升流形成,海水溫度剖面線明顯被往上推。
分析渦漩動能(EKE)與超級颱風行進速度之間的關係,發現於相同的最大持續風速(Vmax)之下,颱風行進速度愈緩慢,所給予的渦漩動能愈大,反之,颱風行進速度愈快,所產生的中尺度渦漩動能則愈小。
According to Geisler’s classic theory (1970), when the phase speed of the first baroclinic mode c1 exceeds the tropical cyclone’s (TC) translation speed Uh (Uh /c1 < 1, slow-moving), the oceanic response is a barotropic, geostrophical, and cyclonic gyre with upwelling in the storm’s center. Following Geisler’s theory (1970), this study analyzed data from drifters of the Surface Velocity Program (SVP), satellite altimeter measurements, and global typhoons from Joint Typhoon Warning Center during 1993-2015 to investigate mesoscale cyclonic eddies induced by slow-moving super typhoons.
Our results show that 22 slow-moving super typhoons can be found globally in this period, among them only seven typhoons produced or strengthened mesoscale cyclonic eddies (3 in Northern Hemisphere, and 4 in Southern Hemisphere). These TCs have several properties in common: [1] mean Uh is less than 2 m/s, [2] slow-moving condition (Uh /c1 < 1) lasts for at least 12 hours, [3] pass the open ocean (without land effect). Strong current speed of TC-eddies over 2 m/s were observed, and these eddies propagated westward for a period of one to eight months. Compared with the North Pacific Subtropical Counter Current (STCC) eddies, the TC-eddies have a life span of about 1.3 times of the STCC eddies, while mean radius is 1.0-1.8 times, eddy kinetic energy (EKE) is 3-16 times, and current speed is 1.1-1.8 times of the STCC eddies.
For the TC Nida-eddy, the SST shows a temperature drop of 2.5-3.5oC as observed by SVP drifters. A 30-m increase of the mixed-layer depth was also found from Global Temperature and Salinity Profile Programme data at a region in the north Pacific Ocean when Nida passed by. After Nida disappeared, the cyclonic eddy became strengthened and the thermocline was moved upward, indicating the formation of upwelling.
Analysis of eddy’s EKE and TC’s translation speed reveal a negative correlation between these two quantities. Under the same TC’s maximum wind speed, as the TC’s translation speed is slower, the induced TC-eddy will have a higher EKE. The opposite is also true.
論文審定書 i
論文公開授權書 ii
謝誌 iii
摘要 v
Abstract vi
目錄 viii
圖目錄 x
表目錄 xiii
一、 前言 1
1-1、熱帶氣旋 1
1-2、前人研究 3
1-3、研究動機與目的 6
二、 資料來源 7
2-1、全球超級颱風 7
2-2、AVISO衛星高度計 9
2-3、Argos表面漂流浮球 10
2-4、NOAA/NODC海水溫度剖面資料 12
2-4-1、長期平均─WOA13 v2 12
2-4-2、實測數據─GTSPP 12
三、 資料分析方法 14
3-1、 超級颱風Slow-moving型態之定義 14
3-2、 中尺度渦漩之定義 18
四、 結果 19
4-1、超級颱風 19
4-2、中尺度渦漩 22
4-2-1、AVISO 22
4-2-2、表面漂流浮球 58
4-3、7個中尺度渦漩之數據─AVISO 69
五、討論與總結 78
5-1、超級颱風slow-moving型態之下的中尺度渦漩 78
5-1-1、Geisler (1970) 數值理論─熱帶氣旋促使渦漩形成之動力 78
5-1-2、促使中尺度渦漩形成之條件 79
5-2、水文資料 83
5-3、超級颱風行進速度與渦漩動能之相關性 89
5-4、與大洋常見的渦漩之比較 91
5-5、總結 92
六、參考文獻 94
廖允強。2010,利用表面浮球及衛星高度計觀測北南海反氣旋渦漩。國立中山大學海洋生物科技暨資源學系研究所碩士論文,共81頁
Brooks, D. A. (1983). The wake of Hurricane Allen in the western Gulf of Mexico. Journal of Physical Oceanography, 13(1), 117-129.
Chang, Y. C., Chen, G. Y., Tseng, R. S., & Chu, P. C. (2012). Effect of Cylindrically Shaped Atoll on Westward-Propagating Anticyclonic Eddy—A Case Study. IEEE Geoscience and Remote Sensing Letters, 9(1), 43-46.
Chang, Y. C., Chen, G. Y., Tseng, R. S., Centurioni, L. R., & Chu, P. C. (2013), Observed near‐surface flows under all tropical cyclone intensity levels using drifters in the northwestern Pacific, Journal of Geophysical Research., 118(5), 2367-2377.
Chang, Y. C., Chu, P. C., Centurioni, L. R., & Tseng, R. S. (2014). Observed near-surface currents under four super typhoons. Journal of Marine Systems, 139, 311-319.
Chang, Y. C., Tseng, R. S., Chu, P. C., Chen, J. M., & Centurioni, L. R. (2016). Observed strong currents under global tropical cyclones. Journal of Marine Systems, 159, 33-40.
Chelton, D. B., Schlax, M. G., & Samelson, R. M. (2011). Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2), 167-216.
Cheng, Y. H., Ho, C. R., Zheng, Q., & Kuo, N. J. (2014). Statistical characteristics of mesoscale eddies in the North Pacific derived from satellite altimetry. Remote Sensing, 6(6), 5164-5183.
Chow, C. H., Hu, J. H., Centurioni, L. R., & Niiler, P. P. (2008). Mesoscale Dongsha Cyclonic Eddy in the northern South China Sea by drifter and satellite observations. Journal of Geophysical Research: Oceans, 113(C4).
D’Asaro, E. A., & MCNEIL, C. TB Sanford, PP Niiler, and EJ Terrill, 2007: Cold wake of Hurricane Frances. Geophys. Res. Lett, 34, L15609.
Geisler, J. E. (1970). Linear theory of the response of a two layer ocean to a moving hurricane. Geophysical and Astrophysical Fluid Dynamics, 1(1-2), 249-272.
Jaimes, B., & Shay, L. K. (2009). Mixed layer cooling in mesoscale oceanic eddies during hurricanes Katrina and Rita. Monthly Weather Review, 137(12), 4188-4207.

Jaimes, B., & Shay, L. K. (2010). Near-inertial wave wake of hurricanes Katrina and Rita over mesoscale oceanic eddies. Journal of Physical Oceanography, 40(6), 1320-1337.
Ko, D. S., Chao, S. Y., Wu, C. C., & Lin, I. I. (2014). Impacts of typhoon megi (2010) on the South China Sea. Journal of Geophysical Research: Oceans, 119(7), 4474-4489.
Lin, I. I., Pun, I. F., & Wu, C. C. (2009). Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part II: Dependence on translation speed. Monthly Weather Review, 137(11), 3744-3757.
Liu, Y., Dong, C., Guan, Y., Chen, D., McWilliams, J., & Nencioli, F. (2012). Eddy analysis in the subtropical zonal band of the North Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 68, 54-67.
Mei, W., Pasquero, C., & Primeau, F. (2012). The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophysical Research Letters, 39(7).
Price, J. F. (1981). Upper ocean response to a hurricane. Journal of Physical Oceanography, 11(2), 153-175.
Price, J. F. (1983). Internal wave wake of a moving storm. Part I. Scales, energy budget and observations. Journal of Physical Oceanography, 13(6), 949-965.
Qiu, B. (1999). Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/Poseidon observations and theory. Journal of Physical Oceanography, 29(10), 2471-2486.
Rabinovich, A. B., Thomson, R. E., & Bograd, S. J. (2002). Drifter observations of anticyclonic eddies near Bussol''Strait, the Kuril Islands. Journal of oceanography, 58(5), 661-671.
Sun, L., Yang, Y. J., & Fu, Y. F. (2009). Impacts of typhoons on the Kuroshio large meander: observation evidences. Atmospheric and Oceanic Science Letters, 2(1), 45-50.
Sun, L., Yang, Y. J., Xian, T., Wang, Y., & Fu, Y. F. (2012). Ocean responses to Typhoon Namtheun explored with Argo floats and multiplatform satellites. Atmosphere-Ocean, 50(sup1), 15-26.
Sun, L., Li, Y. X., Yang, Y. J., Wu, Q., Chen, X. T., Li, Q. Y., ... & Xian, T. (2014). Effects of super typhoons on cyclonic ocean eddies in the western North Pacific: A satellite data‐based evaluation between 2000 and 2008. Journal of Geophysical Research: Oceans, 119(9), 5585-5598.

Veneziano, J. M., Chu, P. C., & Fan, C. W. (2000). Response of the South China Sea to tropical cyclone Ernie 1996.
Wyrtki, K., Magaard, L., & Hager, J. (1976). Eddy energy in the oceans. Journal of Geophysical Research, 81(15), 2641-2646.
Xiu, P., Chai, F., Shi, L., Xue, H., & Chao, Y. (2010). A census of eddy activities in the South China Sea during 1993–2007. Journal of Geophysical Research: Oceans, 115(C3).
Yang, Y. J., Sun, L., Liu, Q., Xian, T., & Fu, Y. F. (2010). The biophysical responses of the upper ocean to the typhoons Namtheun and Malou in 2004. International Journal of Remote Sensing, 31(17-18), 4559-4568.
Yang, Y. J., Xian, T., Sun, L., Fu, Y. F., & Xun, S. P. (2012). Impacts of sequential typhoons on sea surface temperature and sea surface height in September 2008. Acta Oceanologica Sinica, 34(1), 71-78.
Zhang, Z., Tian, J., Qiu, B., Zhao, W., Chang, P., Wu, D., & Wan, X. (2016). Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Scientific reports, 6.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top