跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 11:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林苾瑜
研究生(外文):Pi-yu Lin
論文名稱:海洋化合物對多型性膠質母細胞瘤血管新生與轉移之影響
論文名稱(外文):The effects of marine compound on angiogenesis and migration of glioblastoma multiforme
指導教授:溫志宏溫志宏引用關係
指導教授(外文):Zhi-Hong Wen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋生物科技暨資源學系研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:114
中文關鍵詞:細胞凋亡細胞遷移血管內皮生長因子血管新生Girdin多型性膠質母細胞瘤
外文關鍵詞:ApoptosisMigrationGirdinVascular endothelial growth factor AAngiogenesisGlioblastoma multiforme
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
多型性膠質母細胞瘤(Glioblastoma multiforme)為最惡性的腦瘤,具有高度的致其周邊組織壞死、細胞遷移與新生血管的特性。經存活率統計,在傳統的外科手術及放射治療與化學治療,平均存活時間仍不超過15個月,是目前極為棘手且治癒甚差的極惡性腫瘤。其中血管新生是腫瘤發展必經的途徑之一,抗血管新生亦為一重要癌症藥物發展之策略;血管新生過程中,血管內皮生長因子(Vascular endothelial growth factor A, VEGF-A)為其一重要的促血管新生因子,癌細胞透過釋放VEGF使周圍血管內皮細胞的VEGF receptor (VEGFR)接受VEGF,進而促進血管內皮細胞增生,產生新生血管。自從發現VEGF在血管新生中的角色後,便成了後續將其作為抗血管新生標靶治療的重要依據。
本研究所使用之海洋化合物PON-1621來自海綿Jaspis stellifera之萃取物,前人研究其具有抗癌活性之現象,但未有文獻釐清其機制。本研究結果顯示,此化合物透過抑制AKT與STAT3磷酸化,減少girdin與VEGF的mRNA表現,進而達到抑制血管新生與細胞遷移的功效,以此結果推測,PON-1621或許可成為具有潛力的抗腫瘤血管新生用藥。
As the most aggressive brain cancer type, glioblastoma multiforme (GBM) has features of high level of tissue necrosis, cell migration, and angiogenesis. The survival ratio of GBM is less than 15 months, although treat with traditional surgical, radiotherapy, and chemotherapy. It’s an extremely severe malignant tumor, and can’t be cured so far. In GBM, angiogenesis plays an important role in tumor progression. Therefore, anti-angiogenesis could be one of effect way to stop or slow the growth of GBM. VEGF-A is an important ligand of neovascularization. The tumor cell induces angiogenesis by paracrine of VEGF-A, stimulates VEGFR expression on endothelia cells nearby then. In order to the importance of VEGF-A on tumor angiogenesis, it became a key target of anti-angiogenesis therapy.
A marine-derived bioactive compound, PON-1621, which was extracted from marine sponge, Jaspis stellifera, exibits some uncleared anti-cancer bioactivities. In this research, PON-1621 down-regulates mRNA expression of girdin and VEGF, which are important for migration and angiogenesis by AKT/mTOR/S6 and STAT3 signaling pathway blocking. Based on these results, PON-1621 may be a potential agent on tumor therapy for it’s anti-angiogenesis ability.
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 ix
表次 xi
第壹章、前言 1
第一節、惡性腫瘤之特色 1
第二節、中樞神經系統腫瘤 (Central nervous system tumor) 2
一、多型性膠質母細胞瘤 (Glioblastoma multiforme) 5
二、目前惡性腦瘤之臨床治療策略 6
三、FDA通過之惡性腦瘤使用藥物 7
第三節、惡性腫瘤之訊息傳遞路徑 9
一、AKT/mTOR/S6訊息傳遞路徑 (AKT/mTOR/S6 signaling pathway) 9
二、STAT3訊息傳遞路徑 (STAT3 signaling pathway) 13
第四節、惡性腫瘤轉移之機制 14
一、癌症轉移 (metastasis) 14
二、血管新生 (angiogenesis) 16
第五節、現行惡性腫瘤標靶藥物 20
一、現有之惡性腫瘤標靶藥物 20
二、抑制AKT/mTOR/S6訊息傳遞路徑之藥物 21
第六節、海洋天然藥物 24
一、已上市之海洋抗癌藥物 24
第七節、研究動機與目的 27
第貳章、實驗材料與方法 28
第一節、細胞培養 28
一、細胞株 28
二、細胞繼代培養 28
三、細胞計數 28
第二節、細胞存活率測試 29
第三節、離體細胞Caspase-3活性表現測試 (Caspase-3 activity assay) 29
第四節、離體細胞之血管生成作用測試 (Tube formation assay) 29
第五節、離體細胞之遷移作用測試 30
一、Wound healing migration assay 30
二、Invasion assay 30
第六節、PON-1621對腦瘤細胞蛋白與基因表現之影響 31
一、蛋白表現量測定 (西方點墨法) 31
二、基因表現量測定(即時聚合酶連鎖反應) 34
第七節、VEGF胞外分泌量測定 35
第八節、PON-1621對p-Girdin與F-actin間交互作用之影響 36
第九節、斑馬魚血管新生模式 37
一、斑馬魚種魚Tg (fli1:EGFP)飼養 37
二、斑馬魚胚胎取得 37
三、藥物濃度篩選與實驗仔魚飼養 37
四、斑馬魚體節間血管新生 37
第十節、斑馬魚mRNA分析 38
一、斑馬魚仔魚mRNA萃取 38
第十一節、小鼠血管新生模式 39
一、小鼠BALB/c飼養 39
二、Matrigel Plug Assay 39
三、Drabkin’s Reagent血紅素定量 39
第十二節、實驗數據分析 40
第參章、實驗結果 41
第一節、PON-1621對膠質母細胞瘤細胞株型態與存活之影響 41
一、細胞型態變化 41
二、細胞存活率 41
三、PON-1621對Caspase-3活化誘導的膠質母細胞瘤細胞凋亡之影響 42
第二節、離體細胞之血管生成作用測試 (Tube formation assay) 42
一、PON-1621對人類臍靜脈內皮細胞HUVEC存活之影響 42
二、PON-1621對HUVEC細胞血管生成作用之影響 42
第三節、PON-1621對膠質母細胞瘤細胞遷移作用之影響 43
一、PON-1621對膠質母細胞瘤細胞入侵作用之影響 (Invasion assay) 43
二、PON-1621對GBM8401細胞遷移之影響 (Wound Healing assay) 43
第四節、PON-1621對膠質母細胞瘤血管新生相關路徑之影響 43
一、PON-1621對膠質母細胞瘤細胞AKT活化之影響 44
二、PON-1621對膠質母細胞瘤細胞mTOR活化之影響 44
三、PON-1621對膠質母細胞瘤細胞S6活化之影響 44
四、PON-1621對膠質母細胞瘤細胞STAT3活化之影響 44
五、PON-1621對膠質母細胞瘤細胞HIF-1α mRNA與蛋白表現之影響 45
六、PON-1621對膠質細胞瘤細胞VEGF-A mRNA與蛋白表現之影響 45
七、PON-1621對膠質母細胞瘤細胞VEGF分泌之影響 45
第五節、PON-1621對膠質母細胞瘤細胞遷移相關蛋白之影響 46
一、PON-1621對膠質母細胞瘤細胞EMT相關蛋白表現之影響 46
二、PON-1621對膠質母細胞瘤細胞Girdin mRNA表現之影響 46
三、PON-1621對膠質母細胞瘤p-Girdin活化之影響 46
四、PON-1621對膠質母細胞瘤p-Girdin與F-actin間交互作用之影響 47
第六節、PON-1621對斑馬魚仔魚血管新生之影響 47
一、PON-1621對斑馬魚仔魚存活率之影響 47
二、PON-1621對血管螢光斑馬魚胚胎之體節間血管形成的影響 48
三、PON-1621對Tg (fli1:EGFP)斑馬魚VEGF-A mRNA表現之影響 48
第七節、PON-1621對BALB/c小鼠血管新生之影響 48
第肆章、討論 80
第一節、AKT/mTOR/S6訊息傳遞路徑對癌細胞生長之重要性 80
第二節、PON-1621抑制AKT/mTOR/S6及STAT3訊息傳遞路徑所促進膠質母細胞瘤促進血管新生之機制探討 81
第三節、Girdin在膠質母細胞瘤細胞之遷移現象中之新興角色 83
第四節、PON-1621在in vitro與in vivo實驗抑制血管新生現象 85
第五節、克服PON-1621藥物毒性之策略 86
第六節、腦瘤血腦障壁之突破 86
第七節、總結 86
第伍章、未來展望 90
第陸章、參考文獻 91
1Stewart, B. & Wild, C. World Cancer Report 2014. International Agency for Research on Cancer (IARC), February 2014, 630 pp. (ISBN 978-92-832-0429-9).
2Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2016. CA: a cancer journal for clinicians 66, 7-30 (2016).
3Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. cell 100, 57-70 (2000).
4Types of cancer, (20170121)取自http://www.cancerresearchuk.org/about-cancer/what-is-cancer/how-cancer-starts/types-of-cancer
5Barnholtz-Sloan, J. S. et al. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. Journal of Clinical Oncology 22, 2865-2872 (2004).
6Schouten, L. J., Rutten, J., Huveneers, H. A. & Twijnstra, A. Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer 94, 2698-2705 (2002).
7Louis, D. N. et al. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta neuropathologica 131, 803-820 (2016).
8Cohen, A. L., Holmen, S. L. & Colman, H. IDH1 and IDH2 mutations in gliomas. Current neurology and neuroscience reports 13, 345 (2013).
9Roa, W. et al. Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: a prospective randomized clinical trial. Journal of clinical oncology 22, 1583-1588 (2004).
10Stewart, B. & Wild, C. P. World cancer report 2014. World (2016).
11Young, R. M., Jamshidi, A., Davis, G. & Sherman, J. H. Current trends in the surgical management and treatment of adult glioblastoma. Annals of translational medicine 3 (2015).
12Bleeker, F. E., Molenaar, R. J. & Leenstra, S. Recent advances in the molecular understanding of glioblastoma. Journal of neuro-oncology 108, 11-27 (2012).
13Lima, F. R. et al. Glioblastoma: therapeutic challenges, what lies ahead. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1826, 338-349 (2012).
14Cuddapah, V. A., Robel, S., Watkins, S. & Sontheimer, H. A neurocentric perspective on glioma invasion. Nature Reviews Neuroscience 15, 455-465 (2014).
15Fathima Hurmath, K., Ramaswamy, P. & Nandakumar, D. N. IL‐1β microenvironment promotes proliferation, migration, and invasion of human glioma cells. Cell biology international 38, 1415-1422 (2014).
16Kubelt, C., Hattermann, K., Sebens, S., Mehdorn, H. M. & Held-Feindt, J. Epithelial-to-mesenchymal transition in paired human primary and recurrent glioblastomas. International journal of oncology 46, 2515-2525 (2015).
17Le, A. P. et al. Plexin-B2 promotes invasive growth of malignant glioma. Oncotarget 6, 7293 (2015).
18Das, S. & Marsden, P. A. Angiogenesis in glioblastoma. New England Journal of Medicine 369, 1561-1563 (2013).
19Drugs Approved for Brain Tumors, (20170121) 取自https://www.cancer.gov/about-cancer/treatment/drugs/brain
20A McDowell, K., J Riggins, G. & L Gallia, G. Targeting the AKT pathway in glioblastoma. Current pharmaceutical design 17, 2411-2420 (2011).
21la Iglesia, N. d., Puram, S. V. & Bonni, A. STAT3 regulation of glioblastoma pathogenesis. Current molecular medicine 9, 580-590 (2009).
22Franke, T. PI3K/Akt: getting it right matters. Oncogene 27, 6473-6488 (2008).
23Staal, S. P., Hartley, J. W. & Rowe, W. P. Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma. Proceedings of the National Academy of Sciences 74, 3065-3067 (1977).
24Bellacosa, A., Testa, J. R., Staal, S. P. & Tsichlis, P. N. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 254, 274-277 (1991).
25Bellacosa, A. et al. Structure, expression and chromosomal mapping of c-akt: relationship to v-akt and its implications. Oncogene 8, 745-754 (1993).
26Brazil, D. P. & Hemmings, B. A. Ten years of protein kinase B signalling: a hard Akt to follow. Trends in biochemical sciences 26, 657-664 (2001).
27Scheid, M. P. & Woodgett, J. R. PKB/AKT: functional insights from genetic models. Nature reviews Molecular cell biology 2, 760-768 (2001).
28Coffer, P. J., Burgering, B. M., Peppelenbosch, M. P., Bos, J. L. & Kruijer, W. UV activation of receptor tyrosine kinase activity. Oncogene 11, 561-569 (1995).
29Franke, T. F. et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81, 727-736 (1995).
30Kohn, A. D., Kovacina, K. S. & Roth, R. A. Insulin stimulates the kinase activity of RAC-PK, a pleckstrin homology domain containing ser/thr kinase. The EMBO Journal 14, 4288 (1995).
31Castellano, E. & Downward, J. RAS interaction with PI3K more than just another effector pathway. Genes & cancer 2, 261-274 (2011).
32LoPiccolo, J., Blumenthal, G. M., Bernstein, W. B. & Dennis, P. A. Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resistance Updates 11, 32-50 (2008).
33Raychaudhuri, S. K. & Raychaudhuri, S. R. mTOR signaling cascade in psoriatic disease: double kinase mTOR inhibitor a novel therapeutic target. Indian journal of dermatology 59, 67 (2014).
34Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3, 4, 5-trisphosphate. Journal of Biological Chemistry 273, 13375-13378 (1998).
35Genetics Home Reference, (20170121) 取自https://ghr.nlm.nih.gov/gene/PTEN
36Carnero, A., Blanco-Aparicio, C., Renner, O., Link, W. & Leal, J. F. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Current cancer drug targets 8, 187-198 (2008).
37Maehama, T. PTEN: its deregulation and tumorigenesis. Biological and Pharmaceutical Bulletin 30, 1624-1627 (2007).
38Salmena, L., Carracedo, A. & Pandolfi, P. P. Tenets of PTEN tumor suppression. Cell 133, 403-414 (2008).
39 (The Institute of Cancer Research, 2016).
40Shaw, R. J. & Cantley, L. C. Ras, PI (3) K and mTOR signalling controls tumour cell growth. Nature 441, 424-430 (2006).
41Nogueira, L., Ruiz-Ontañon, P., Vazquez-Barquero, A., Moris, F. & Fernandez-Luna, J. L. The NFκB pathway: a therapeutic target in glioblastoma. Oncotarget 2, 646-653 (2011).
42Prigent, S. A. et al. Enhanced tumorigenic behavior of glioblastoma cells expressing a truncated epidermal growth factor receptor is mediated through the Ras-Shc-Grb2 pathway. Journal of Biological Chemistry 271, 25639-25645 (1996).
43Magnuson, B., Ekim, B. & Fingar, D. C. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochemical Journal 441, 1-21 (2012).
44Alessi, D. R., Pearce, L. R. & García-Martínez, J. M. New insights into mTOR signaling: mTORC2 and beyond. Sci. Signal. 2, pe27-pe27 (2009).
45Foster, K. G. & Fingar, D. C. Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. Journal of Biological Chemistry 285, 14071-14077 (2010).
46Ma, X. M. & Blenis, J. Molecular mechanisms of mTOR-mediated translational control. Nature reviews Molecular cell biology 10, 307-318 (2009).
47Fenton, T. R. & Gout, I. T. Functions and regulation of the 70kDa ribosomal S6 kinases. The international journal of biochemistry & cell biology 43, 47-59 (2011).
48Meyuhas, O. & Dreazen, A. Ribosomal protein S6 kinase: from TOP mRNAs to cell size. Progress in molecular biology and translational science 90, 109-153 (2009).
49Liu, L.-Z., Zheng, J. Z., Wang, X.-R. & Jiang, B.-H. Endothelial p70 S6 kinase 1 in regulating tumor angiogenesis. Cancer research 68, 8183-8188 (2008).
50Thelin, E. P. et al. Lesion Size Is Exacerbated in Hypoxic Rats Whereas Hypoxia-Inducible Factor-1 Alpha and Vascular Endothelial Growth Factor Increase in Injured Normoxic Rats: A Prospective Cohort Study of Secondary Hypoxia in Focal Traumatic Brain Injury. Frontiers in Neurology 7 (2016).
51Banerjee, S., Dowsett, M., Ashworth, A. & Martin, L.-A. Mechanisms of disease: angiogenesis and the management of breast cancer. Nature clinical practice Oncology 4, 536-550 (2007).
52Meyuhas, O. Physiological roles of ribosomal protein S6: one of its kind. International review of cell and molecular biology 268, 1-37 (2008).
53Robinson, J. P., VanBrocklin, M. W., McKinney, A. J., Gach, H. M. & Holmen, S. L. Akt signaling is required for glioblastoma maintenance in vivo. American journal of cancer research 1, 155 (2011).
54Mao, H., LeBrun, D. G., Yang, J., Zhu, V. F. & Li, M. Deregulated signaling pathways in glioblastoma multiforme: molecular mechanisms and therapeutic targets. Cancer investigation 30, 48-56 (2012).
55Buettner, R., Mora, L. B. & Jove, R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clinical cancer research 8, 945-954 (2002).
56Igaz, P., Toth, S. & Falus, A. Biological and clinical significance of the JAK-STAT pathway; lessons from knockout mice. Inflammation Research 50, 435-441 (2001).
57O''Shea, J. J., Gadina, M. & Schreiber, R. D. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109, S121-S131 (2002).
58Aaronson, D. S. & Horvath, C. M. A road map for those who don''t know JAK-STAT. Science 296, 1653-1655 (2002).
59Leonard, W. J. Role of Jak kinases and STATs in cytokine signal transduction. International journal of hematology 73, 271-277 (2001).
60Chen, Z. & Han, Z. C. STAT3: a critical transcription activator in angiogenesis. Medicinal research reviews 28, 185-200 (2008).
61Jung, J. E. et al. STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. The FASEB Journal 19, 1296-1298 (2005).
62Steeg, P. S. Targeting metastasis. Nature Reviews Cancer 16, 201-218 (2016).
63Nguyen, D. X., Bos, P. D. & Massagué, J. Metastasis: from dissemination to organ-specific colonization. Nature Reviews Cancer 9, 274-284 (2009).
64Sethi, N. & Kang, Y. Unravelling the complexity of metastasis—molecular understanding and targeted therapies. Nature Reviews Cancer 11, 735-748 (2011).
65Wan, L. et al. Aspirin, lysine, mifepristone and doxycycline combined can effectively and safely prevent and treat cancer metastasis: prevent seeds from gemmating on soil. Oncotarget 6, 35157 (2015).
66Meadows, G. G. & Zhang, H. Effects of Alcohol on Tumor Growth, Metastasis, Immune Response, and Host Survival. Alcohol research: current reviews 37, 311 (2015).
67Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. nature 407, 249-257 (2000).
68Goldmann, E. The growth of malignant disease in man and the lower animals: with special reference to the vascular system. The Lancet 170, 1236-1240 (1907).
69Ehrmann, R. L. & Knoth, M. Choriocarcinoma: transfilter stimulation of vasoproliferation in the hamster cheek pouch—studied by light and electron microscopy. Journal of the National Cancer Institute 41, 1329-1341 (1968).
70Greenblatt, M. & Philippe, S. K. Tumor angiogenesis: transfilter diffusion studies in the hamster by the transparent chamber technique. Journal of the National Cancer Institute 41, 111-124 (1968).
71Nishida, N., Yano, H., Nishida, T., Kamura, T. & Kojiro, M. Angiogenesis in cancer. Vascular health and risk management 2, 213 (2006).
72Gullino, P. M. Angiogenesis and oncogenesis. Journal of the National Cancer Institute 61, 639 (1978).
73Wang, Z. et al. in Seminars in cancer biology. S224-S243 (Elsevier).
74Hoeben, A. et al. Vascular endothelial growth factor and angiogenesis. Pharmacological reviews 56, 549-580 (2004).
75Claesson‐Welsh, L. & Welsh, M. VEGFA and tumour angiogenesis. Journal of internal medicine 273, 114-127 (2013).
76Ferrara, N. Vascular endothelial growth factor: basic science and clinical progress. Endocrine reviews 25, 581-611 (2004).
77Allavena, P., Sica, A., Garlanda, C. & Mantovani, A. The Yin‐Yang of tumor‐associated macrophages in neoplastic progression and immune surveillance. Immunological reviews 222, 155-161 (2008).
78Cassetta, L., Cassol, E. & Poli, G. Macrophage polarization in health and disease. The Scientific World Journal 11, 2391-2402 (2011).
79Jain, R. K. et al. Angiogenesis in brain tumours. Nature Reviews Neuroscience 8, 610-622 (2007).
80Cheng, S.-Y. et al. Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor. Proceedings of the National Academy of Sciences 93, 8502-8507 (1996).
81Fine, H. A. et al. Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas. Journal of Clinical Oncology 18, 708-708 (2000).
82Jain, R. K., Duda, D. G., Clark, J. W. & Loeffler, J. S. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nature clinical practice Oncology 3, 24-40 (2006).
83Jain, R. K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nature medicine 7, 987-989 (2001).
84Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58-62 (2005).
85Winkler, F. et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer cell 6, 553-563 (2004).
86Batchelor, T. T. et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer cell 11, 83-95 (2007).
87Vredenburgh, J. J. et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clinical cancer research 13, 1253-1259 (2007).
88Matsumura, A. et al. HGF regulates VEGF expression via the c-Met receptor downstream pathways, PI3K/Akt, MAPK and STAT3, in CT26 murine cells. International journal of oncology 42, 535-542 (2013).
89Semenza, G. L. Targeting HIF-1 for cancer therapy. Nature reviews cancer 3, 721-732 (2003).
90Dodd, K. M., Yang, J., Shen, M. H., Sampson, J. R. & Tee, A. R. mTORC1 drives HIF-1α and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3. Oncogene 34, 2239-2250 (2015).
91Ghosh, A. K. et al. Aberrant regulation of pVHL levels by microRNA promotes the HIF/VEGF axis in CLL B cells. Blood 113, 5568-5574 (2009).
92Flintoft, L. Going for the double. Nature Reviews Cancer 4, 172-172 (2004).
93Natsume, A. et al. Girdin maintains the stemness of glioblastoma stem cells. Oncogene 31, 2715-2724 (2012).
94Enomoto, A. et al. Akt/PKB regulates actin organization and cell motility via Girdin/APE. Developmental cell 9, 389-402 (2005).
95Blanchoin, L., Boujemaa-Paterski, R., Sykes, C. & Plastino, J. Actin dynamics, architecture, and mechanics in cell motility. Physiological reviews 94, 235-263 (2014).
96Kitamura, T. et al. Regulation of VEGF-mediated angiogenesis by the Akt/PKB substrate Girdin. Nature cell biology 10, 329-337 (2008).
97Friedman, H. S. et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. Journal of Clinical Oncology 27, 4733-4740 (2009).
98Vredenburgh, J. J. et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. Journal of Clinical Oncology 25, 4722-4729 (2007).
99Guimarães, I. S. et al. Targeting the PI3K/AKT/mTOR Pathway in Cancer Cells. (2015).
100Engelman, J. A. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nature Reviews Cancer 9, 550-562 (2009).
101Yang, Q., Modi, P., Newcomb, T., Quéva, C. & Gandhi, V. Idelalisib: first-in-class PI3K delta inhibitor for the treatment of chronic lymphocytic leukemia, small lymphocytic leukemia, and follicular lymphoma. Clinical Cancer Research 21, 1537-1542 (2015).
102Herman, S. E. et al. Phosphatidylinositol 3-kinase-δ inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood 116, 2078-2088 (2010).
103Lannutti, B. J. et al. CAL-101, a p110δ selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood 117, 591-594 (2011).
104Singh, K., Sun, S. & Vezina, C. Rapamycin (AY-22,989), a new antifungal antibiotic. IV. Mechanism of action. The Journal of antibiotics 32, 630-645 (1979).
105Vezina, C., Kudelski, A. & Sehgal, S. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. The Journal of antibiotics 28, 721-726 (1975).
106Tsang, C. K., Qi, H., Liu, L. F. & Zheng, X. S. Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug discovery today 12, 112-124 (2007).
107Shafer, A., Zhou, C., Gehrig, P. A., Boggess, J. F. & Bae‐Jump, V. L. Rapamycin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and induction of apoptosis. International Journal of Cancer 126, 1144-1154 (2010).
108Oldham, S. & Hafen, E. Insulin/IGF and target of rapamycin signaling: a TOR de force in growth control. Trends in cell biology 13, 79-85 (2003).
109Fang, Y., Vilella-Bach, M., Bachmann, R., Flanigan, A. & Chen, J. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294, 1942-1945 (2001).
110Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177-189 (2002).
111Kim, D.-H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163-175 (2002).
112Huang, S. & Houghton, P. J. Targeting mTOR signaling for cancer therapy. Current opinion in pharmacology 3, 371-377 (2003).
113Bae‐Jump, V. L., Zhou, C., Boggess, J. F. & Gehrig, P. A. Synergistic effect of rapamycin and cisplatin in endometrial cancer cells. Cancer 115, 3887-3896 (2009).
114Temkin, S. M. & Fleming, G. Current treatment of metastatic endometrial cancer. Cancer control: journal of the Moffitt Cancer Center 16, 38 (2009).
115Burris, H. A. et al. Health‐related quality of life of patients with advanced breast cancer treated with everolimus plus exemestane versus placebo plus exemestane in the phase 3, randomized, controlled, BOLERO‐2 trial. Cancer 119, 1908-1915 (2013).
116Pavel, M. E. et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. The Lancet 378, 2005-2012 (2011).
117Martins, A., Vieira, H., Gaspar, H. & Santos, S. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: Tips for success. Marine drugs 12, 1066-1101 (2014).
118Gerwick, W. H. & Moore, B. S. Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chemistry & biology 19, 85-98 (2012).
119Rocha-Martin, J., Harrington, C., Dobson, A. D. & O''Gara, F. Emerging strategies and integrated systems microbiology technologies for biodiscovery of marine bioactive compounds. Marine drugs 12, 3516-3559 (2014).
120Garcia-Rocha, M., Garcia-Gravalos, M. & Avila, J. Characterisation of antimitotic products from marine organisms that disorganise the microtubule network: ecteinascidin 743, isohomohalichondrin-B and LL-15. British journal of cancer 73, 875 (1996).
121D''Incalci, M. & Galmarini, C. M. A review of trabectedin (ET-743): a unique mechanism of action. Molecular cancer therapeutics 9, 2157-2163 (2010).
122Research and Markets: Brain Tumor - Pipeline Assessment and Market Forecasts to 2017, (20170124) 取自http://www.businesswire.com/news/home/20110120005643/en/Research-Markets-Brain-Tumor---Pipeline-Assessment
123Castellino, R. C. & Durden, D. L. Mechanisms of Disease: the PI3K–Akt–PTEN signaling node—an intercept point for the control of angiogenesis in brain tumors. Nature Clinical Practice Neurology 3, 682-693 (2007).
124Sonoda, Y. et al. Akt pathway activation converts anaplastic astrocytoma to glioblastoma multiforme in a human astrocyte model of glioma. Cancer research 61, 6674-6678 (2001).
125Tang, S.-A. et al. In vitro antitumor activity of stellettin B, a triterpene from marine sponge Jaspis stellifera, on human glioblastoma cancer SF295 cells. Marine drugs 12, 4200-4213 (2014).
126Park, H.-J. et al. Human umbilical vein endothelial cells and human dermal microvascular endothelial cells offer new insights into the relationship between lipid metabolism and angiogenesis. Stem cell reviews 2, 93-101 (2006).
127Sylvest, L., Bendiksen, C. D. & Houen, G. Phosphatase inhibitors with anti‐angiogenic effect in vitro. Apmis 118, 49-59 (2010).
128Kung, H.-N., Yang, M.-J., Chang, C.-F., Chau, Y.-P. & Lu, K.-S. In vitro and in vivo wound healing-promoting activities of β-lapachone. American Journal of Physiology-Cell Physiology 295, C931-C943 (2008).
129Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the Folin phenol reagent. J biol Chem 193, 265-275 (1951).
130Wei, S. C. et al. Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nature cell biology 17, 678-688 (2015).
131Yu, L.-F., Cheng, Y., Qiao, M.-M., Zhang, Y.-P. & Wu, Y.-L. Activation of STAT3 signaling in human stomach adenocarcinoma drug-resistant cell line and its relationship with expression of vascular endothelial growth factor. World J Gastroenterol 11, 875-879 (2005).
132Nardinocchi, L., Puca, R., Sacchi, A. & D''Orazi, G. Inhibition of HIF-1alpha activity by homeodomain-interacting protein kinase-2 correlates with sensitization of chemoresistant cells to undergo apoptosis. Molecular cancer 8, 1 (2009).
133Zhang, Y.-J., Li, A.-J., Han, Y., Yin, L. & Lin, M.-B. Inhibition of Girdin enhances chemosensitivity of colorectal cancer cells to oxaliplatin. World journal of gastroenterology: WJG 20, 8229 (2014).
134Kazimi, N. & Cahill, G. M. Development of a circadian melatonin rhythm in embryonic zebrafish. Developmental Brain Research 117, 47-52 (1999).
135Akimenko, M.-A., Johnson, S. L., Westerfield, M. & Ekker, M. Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish. Development 121, 347-357 (1995).
136Malinda, K. M. In vivo matrigel migration and angiogenesis assay. Angiogenesis Protocols: Second Edition, 287-294 (2009).
137Lucidarme, O. et al. Angiogenesis model for ultrasound contrast research: exploratory study1. Academic radiology 11, 4-12 (2004).
138Salvesen, G. S. & Dixit, V. M. Caspases: intracellular signaling by proteolysis. Cell 91, 443-446 (1997).
139Datta, S. R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231-241 (1997).
140Zha, J., Harada, H., Yang, E., Jockel, J. & Korsmeyer, S. J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X L. Cell 87, 619-628 (1996).
141Zhou, H., Li, X.-M., Meinkoth, J. & Pittman, R. N. Akt regulates cell survival and apoptosis at a postmitochondrial level. The Journal of cell biology 151, 483-494 (2000).
142Green, D. R. & Reed, J. C. Mitochondria and apoptosis. Science 281, 1309 (1998).
143Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T. & Alnemri, E. S. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Molecular cell 1, 949-957 (1998).
144Zou, H., Li, Y., Liu, X. & Wang, X. An APAF-1· cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. Journal of Biological Chemistry 274, 11549-11556 (1999).
145Slee, E. A. et al. Ordering the cytochrome c–initiated caspase cascade: hierarchical activation of caspases-2,-3,-6,-7,-8, and-10 in a caspase-9–dependent manner. The Journal of cell biology 144, 281-292 (1999).
146Weng, H.-Y. et al. Zerumbone suppresses IKKα, Akt, and FOXO1 activation, resulting in apoptosis of GBM 8401 cells. Journal of biomedical science 19, 1 (2012).
147Rubenstein, J. L. et al. Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia 2, 306-314 (2000).
148Knizetova, P. et al. Autocrine regulation of glioblastoma cell-cycle progression, viability and radioresistance through the VEGF-VEGFR2 (KDR) interplay. Cell cycle 7, 2553-2561 (2008).
149Samoto, K. et al. Expression of vascular endothelial growth factor and its possible relation with neovascularization in human brain tumors. Cancer research 55, 1189-1193 (1995).
150Goel, H. L. & Mercurio, A. M. VEGF targets the tumour cell. Nature Reviews Cancer 13, 871-882 (2013).
151Yuan, G. et al. JSI-124 suppresses invasion and angiogenesis of glioblastoma cells in vitro. PloS one 10, e0118894 (2015).
152Méndez, O. et al. Knock down of HIF-1α in glioma cells reduces migration in vitro and invasion in vivo and impairs their ability to form tumor spheres. Molecular cancer 9, 1 (2010).
153Ji, X. et al. Knockdown of Nrf2 suppresses glioblastoma angiogenesis by inhibiting hypoxia‐induced activation of HIF‐1α. International journal of cancer 135, 574-584 (2014).
154Pawlus, M., Wang, L. & Hu, C. STAT3 and HIF1α cooperatively activate HIF1 target genes in MDA-MB-231 and RCC4 cells. Oncogene 33, 1670 (2014).
155Pathak, A. K. et al. Ursolic acid inhibits STAT3 activation pathway leading to suppression of proliferation and chemosensitization of human multiple myeloma cells. Molecular Cancer Research 5, 943-955 (2007).
156Su, Y. et al. JSI-124 inhibits glioblastoma multiforme cell proliferation through G2/M cell cycle arrest and apoptosis augmentation. Cancer biology & therapy 7, 1243-1249 (2008).
157Kim, M.-J. et al. OPB-31121, a novel small molecular inhibitor, disrupts the JAK2/STAT3 pathway and exhibits an antitumor activity in gastric cancer cells. Cancer letters 335, 145-152 (2013).
158Rins, J., Guma, M. & Schachtrup, C. NFksppaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-Ialpha. Nature 453, 807-811 (2008).
159LaGory, E. L. & Giaccia, A. J. The ever-expanding role of HIF in tumour and stromal biology. Nature cell biology 18, 356-365 (2016).
160Kujawski, M. et al. Stat3 mediates myeloid cell–dependent tumor angiogenesis in mice. The Journal of clinical investigation 118, 3367-3377 (2008).
161Spirina, L. V. et al. Expression of vascular endothelial growth factor and transcription factors HIF-1, NF-kB expression in squamous cell carcinoma of head and neck; association with proteasome and calpain activities. Journal of cancer research and clinical oncology 139, 625-633 (2013).
162Nakabayashi, H. & Shimizu, K. Involvement of Akt/NF-κB pathway in antitumor effects of parthenolide on glioblastoma cells in vitro and in vivo. BMC cancer 12, 1 (2012).
163Xie, T.-X., Xia, Z., Zhang, N., Gong, W. & Huang, S. Constitutive NF-κB activity regulates the expression of VEGF and IL-8 and tumor angiogenesis of human glioblastoma. Oncology reports 23, 725 (2010).
164Bai, D., Ueno, L. & Vogt, P. K. Akt‐mediated regulation of NFκB and the essentialness of NFκB for the oncogenicity of PI3K and Akt. International Journal of Cancer 125, 2863-2870 (2009).
165Jost, P. J. & Ruland, J. Aberrant NF-κB signaling in lymphoma: mechanisms, consequences, and therapeutic implications. Blood 109, 2700-2707 (2007).
166Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nature Reviews Cancer 2, 442-454 (2002).
167Pala, A., Wirtz, C. R., Karpel-Massler, G. & Halatsch, M.-E. Epithelial to mesenchymal transition and progression of glioblastoma. (INTECH Open Access Publisher, 2013).
168Isogai, S., Horiguchi, M. & Weinstein, B. M. The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Developmental biology 230, 278-301 (2001).
169Liu, X. et al. Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: an experimental analysis of the role of blood-brain barrier permeability, plasma protein binding, and brain tissue binding. Journal of Pharmacology and Experimental Therapeutics 313, 1254-1262 (2005).
170Sakariassen, P. Ø. et al. Angiogenesis-independent tumor growth mediated by stem-like cancer cells. Proceedings of the National Academy of Sciences 103, 16466-16471 (2006).
171Wong, E. T. & Brem, S. Taming glioblastoma: targeting angiogenesis. Journal of Clinical Oncology 25, 4705-4706 (2007).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊