|
1Stewart, B. & Wild, C. World Cancer Report 2014. International Agency for Research on Cancer (IARC), February 2014, 630 pp. (ISBN 978-92-832-0429-9). 2Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2016. CA: a cancer journal for clinicians 66, 7-30 (2016). 3Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. cell 100, 57-70 (2000). 4Types of cancer, (20170121)取自http://www.cancerresearchuk.org/about-cancer/what-is-cancer/how-cancer-starts/types-of-cancer 5Barnholtz-Sloan, J. S. et al. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. Journal of Clinical Oncology 22, 2865-2872 (2004). 6Schouten, L. J., Rutten, J., Huveneers, H. A. & Twijnstra, A. Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer 94, 2698-2705 (2002). 7Louis, D. N. et al. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta neuropathologica 131, 803-820 (2016). 8Cohen, A. L., Holmen, S. L. & Colman, H. IDH1 and IDH2 mutations in gliomas. Current neurology and neuroscience reports 13, 345 (2013). 9Roa, W. et al. Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: a prospective randomized clinical trial. Journal of clinical oncology 22, 1583-1588 (2004). 10Stewart, B. & Wild, C. P. World cancer report 2014. World (2016). 11Young, R. M., Jamshidi, A., Davis, G. & Sherman, J. H. Current trends in the surgical management and treatment of adult glioblastoma. Annals of translational medicine 3 (2015). 12Bleeker, F. E., Molenaar, R. J. & Leenstra, S. Recent advances in the molecular understanding of glioblastoma. Journal of neuro-oncology 108, 11-27 (2012). 13Lima, F. R. et al. Glioblastoma: therapeutic challenges, what lies ahead. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1826, 338-349 (2012). 14Cuddapah, V. A., Robel, S., Watkins, S. & Sontheimer, H. A neurocentric perspective on glioma invasion. Nature Reviews Neuroscience 15, 455-465 (2014). 15Fathima Hurmath, K., Ramaswamy, P. & Nandakumar, D. N. IL‐1β microenvironment promotes proliferation, migration, and invasion of human glioma cells. Cell biology international 38, 1415-1422 (2014). 16Kubelt, C., Hattermann, K., Sebens, S., Mehdorn, H. M. & Held-Feindt, J. Epithelial-to-mesenchymal transition in paired human primary and recurrent glioblastomas. International journal of oncology 46, 2515-2525 (2015). 17Le, A. P. et al. Plexin-B2 promotes invasive growth of malignant glioma. Oncotarget 6, 7293 (2015). 18Das, S. & Marsden, P. A. Angiogenesis in glioblastoma. New England Journal of Medicine 369, 1561-1563 (2013). 19Drugs Approved for Brain Tumors, (20170121) 取自https://www.cancer.gov/about-cancer/treatment/drugs/brain 20A McDowell, K., J Riggins, G. & L Gallia, G. Targeting the AKT pathway in glioblastoma. Current pharmaceutical design 17, 2411-2420 (2011). 21la Iglesia, N. d., Puram, S. V. & Bonni, A. STAT3 regulation of glioblastoma pathogenesis. Current molecular medicine 9, 580-590 (2009). 22Franke, T. PI3K/Akt: getting it right matters. Oncogene 27, 6473-6488 (2008). 23Staal, S. P., Hartley, J. W. & Rowe, W. P. Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma. Proceedings of the National Academy of Sciences 74, 3065-3067 (1977). 24Bellacosa, A., Testa, J. R., Staal, S. P. & Tsichlis, P. N. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 254, 274-277 (1991). 25Bellacosa, A. et al. Structure, expression and chromosomal mapping of c-akt: relationship to v-akt and its implications. Oncogene 8, 745-754 (1993). 26Brazil, D. P. & Hemmings, B. A. Ten years of protein kinase B signalling: a hard Akt to follow. Trends in biochemical sciences 26, 657-664 (2001). 27Scheid, M. P. & Woodgett, J. R. PKB/AKT: functional insights from genetic models. Nature reviews Molecular cell biology 2, 760-768 (2001). 28Coffer, P. J., Burgering, B. M., Peppelenbosch, M. P., Bos, J. L. & Kruijer, W. UV activation of receptor tyrosine kinase activity. Oncogene 11, 561-569 (1995). 29Franke, T. F. et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81, 727-736 (1995). 30Kohn, A. D., Kovacina, K. S. & Roth, R. A. Insulin stimulates the kinase activity of RAC-PK, a pleckstrin homology domain containing ser/thr kinase. The EMBO Journal 14, 4288 (1995). 31Castellano, E. & Downward, J. RAS interaction with PI3K more than just another effector pathway. Genes & cancer 2, 261-274 (2011). 32LoPiccolo, J., Blumenthal, G. M., Bernstein, W. B. & Dennis, P. A. Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resistance Updates 11, 32-50 (2008). 33Raychaudhuri, S. K. & Raychaudhuri, S. R. mTOR signaling cascade in psoriatic disease: double kinase mTOR inhibitor a novel therapeutic target. Indian journal of dermatology 59, 67 (2014). 34Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3, 4, 5-trisphosphate. Journal of Biological Chemistry 273, 13375-13378 (1998). 35Genetics Home Reference, (20170121) 取自https://ghr.nlm.nih.gov/gene/PTEN 36Carnero, A., Blanco-Aparicio, C., Renner, O., Link, W. & Leal, J. F. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Current cancer drug targets 8, 187-198 (2008). 37Maehama, T. PTEN: its deregulation and tumorigenesis. Biological and Pharmaceutical Bulletin 30, 1624-1627 (2007). 38Salmena, L., Carracedo, A. & Pandolfi, P. P. Tenets of PTEN tumor suppression. Cell 133, 403-414 (2008). 39 (The Institute of Cancer Research, 2016). 40Shaw, R. J. & Cantley, L. C. Ras, PI (3) K and mTOR signalling controls tumour cell growth. Nature 441, 424-430 (2006). 41Nogueira, L., Ruiz-Ontañon, P., Vazquez-Barquero, A., Moris, F. & Fernandez-Luna, J. L. The NFκB pathway: a therapeutic target in glioblastoma. Oncotarget 2, 646-653 (2011). 42Prigent, S. A. et al. Enhanced tumorigenic behavior of glioblastoma cells expressing a truncated epidermal growth factor receptor is mediated through the Ras-Shc-Grb2 pathway. Journal of Biological Chemistry 271, 25639-25645 (1996). 43Magnuson, B., Ekim, B. & Fingar, D. C. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochemical Journal 441, 1-21 (2012). 44Alessi, D. R., Pearce, L. R. & García-Martínez, J. M. New insights into mTOR signaling: mTORC2 and beyond. Sci. Signal. 2, pe27-pe27 (2009). 45Foster, K. G. & Fingar, D. C. Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. Journal of Biological Chemistry 285, 14071-14077 (2010). 46Ma, X. M. & Blenis, J. Molecular mechanisms of mTOR-mediated translational control. Nature reviews Molecular cell biology 10, 307-318 (2009). 47Fenton, T. R. & Gout, I. T. Functions and regulation of the 70kDa ribosomal S6 kinases. The international journal of biochemistry & cell biology 43, 47-59 (2011). 48Meyuhas, O. & Dreazen, A. Ribosomal protein S6 kinase: from TOP mRNAs to cell size. Progress in molecular biology and translational science 90, 109-153 (2009). 49Liu, L.-Z., Zheng, J. Z., Wang, X.-R. & Jiang, B.-H. Endothelial p70 S6 kinase 1 in regulating tumor angiogenesis. Cancer research 68, 8183-8188 (2008). 50Thelin, E. P. et al. Lesion Size Is Exacerbated in Hypoxic Rats Whereas Hypoxia-Inducible Factor-1 Alpha and Vascular Endothelial Growth Factor Increase in Injured Normoxic Rats: A Prospective Cohort Study of Secondary Hypoxia in Focal Traumatic Brain Injury. Frontiers in Neurology 7 (2016). 51Banerjee, S., Dowsett, M., Ashworth, A. & Martin, L.-A. Mechanisms of disease: angiogenesis and the management of breast cancer. Nature clinical practice Oncology 4, 536-550 (2007). 52Meyuhas, O. Physiological roles of ribosomal protein S6: one of its kind. International review of cell and molecular biology 268, 1-37 (2008). 53Robinson, J. P., VanBrocklin, M. W., McKinney, A. J., Gach, H. M. & Holmen, S. L. Akt signaling is required for glioblastoma maintenance in vivo. American journal of cancer research 1, 155 (2011). 54Mao, H., LeBrun, D. G., Yang, J., Zhu, V. F. & Li, M. Deregulated signaling pathways in glioblastoma multiforme: molecular mechanisms and therapeutic targets. Cancer investigation 30, 48-56 (2012). 55Buettner, R., Mora, L. B. & Jove, R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clinical cancer research 8, 945-954 (2002). 56Igaz, P., Toth, S. & Falus, A. Biological and clinical significance of the JAK-STAT pathway; lessons from knockout mice. Inflammation Research 50, 435-441 (2001). 57O''Shea, J. J., Gadina, M. & Schreiber, R. D. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109, S121-S131 (2002). 58Aaronson, D. S. & Horvath, C. M. A road map for those who don''t know JAK-STAT. Science 296, 1653-1655 (2002). 59Leonard, W. J. Role of Jak kinases and STATs in cytokine signal transduction. International journal of hematology 73, 271-277 (2001). 60Chen, Z. & Han, Z. C. STAT3: a critical transcription activator in angiogenesis. Medicinal research reviews 28, 185-200 (2008). 61Jung, J. E. et al. STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. The FASEB Journal 19, 1296-1298 (2005). 62Steeg, P. S. Targeting metastasis. Nature Reviews Cancer 16, 201-218 (2016). 63Nguyen, D. X., Bos, P. D. & Massagué, J. Metastasis: from dissemination to organ-specific colonization. Nature Reviews Cancer 9, 274-284 (2009). 64Sethi, N. & Kang, Y. Unravelling the complexity of metastasis—molecular understanding and targeted therapies. Nature Reviews Cancer 11, 735-748 (2011). 65Wan, L. et al. Aspirin, lysine, mifepristone and doxycycline combined can effectively and safely prevent and treat cancer metastasis: prevent seeds from gemmating on soil. Oncotarget 6, 35157 (2015). 66Meadows, G. G. & Zhang, H. Effects of Alcohol on Tumor Growth, Metastasis, Immune Response, and Host Survival. Alcohol research: current reviews 37, 311 (2015). 67Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. nature 407, 249-257 (2000). 68Goldmann, E. The growth of malignant disease in man and the lower animals: with special reference to the vascular system. The Lancet 170, 1236-1240 (1907). 69Ehrmann, R. L. & Knoth, M. Choriocarcinoma: transfilter stimulation of vasoproliferation in the hamster cheek pouch—studied by light and electron microscopy. Journal of the National Cancer Institute 41, 1329-1341 (1968). 70Greenblatt, M. & Philippe, S. K. Tumor angiogenesis: transfilter diffusion studies in the hamster by the transparent chamber technique. Journal of the National Cancer Institute 41, 111-124 (1968). 71Nishida, N., Yano, H., Nishida, T., Kamura, T. & Kojiro, M. Angiogenesis in cancer. Vascular health and risk management 2, 213 (2006). 72Gullino, P. M. Angiogenesis and oncogenesis. Journal of the National Cancer Institute 61, 639 (1978). 73Wang, Z. et al. in Seminars in cancer biology. S224-S243 (Elsevier). 74Hoeben, A. et al. Vascular endothelial growth factor and angiogenesis. Pharmacological reviews 56, 549-580 (2004). 75Claesson‐Welsh, L. & Welsh, M. VEGFA and tumour angiogenesis. Journal of internal medicine 273, 114-127 (2013). 76Ferrara, N. Vascular endothelial growth factor: basic science and clinical progress. Endocrine reviews 25, 581-611 (2004). 77Allavena, P., Sica, A., Garlanda, C. & Mantovani, A. The Yin‐Yang of tumor‐associated macrophages in neoplastic progression and immune surveillance. Immunological reviews 222, 155-161 (2008). 78Cassetta, L., Cassol, E. & Poli, G. Macrophage polarization in health and disease. The Scientific World Journal 11, 2391-2402 (2011). 79Jain, R. K. et al. Angiogenesis in brain tumours. Nature Reviews Neuroscience 8, 610-622 (2007). 80Cheng, S.-Y. et al. Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor. Proceedings of the National Academy of Sciences 93, 8502-8507 (1996). 81Fine, H. A. et al. Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas. Journal of Clinical Oncology 18, 708-708 (2000). 82Jain, R. K., Duda, D. G., Clark, J. W. & Loeffler, J. S. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nature clinical practice Oncology 3, 24-40 (2006). 83Jain, R. K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nature medicine 7, 987-989 (2001). 84Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58-62 (2005). 85Winkler, F. et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer cell 6, 553-563 (2004). 86Batchelor, T. T. et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer cell 11, 83-95 (2007). 87Vredenburgh, J. J. et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clinical cancer research 13, 1253-1259 (2007). 88Matsumura, A. et al. HGF regulates VEGF expression via the c-Met receptor downstream pathways, PI3K/Akt, MAPK and STAT3, in CT26 murine cells. International journal of oncology 42, 535-542 (2013). 89Semenza, G. L. Targeting HIF-1 for cancer therapy. Nature reviews cancer 3, 721-732 (2003). 90Dodd, K. M., Yang, J., Shen, M. H., Sampson, J. R. & Tee, A. R. mTORC1 drives HIF-1α and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3. Oncogene 34, 2239-2250 (2015). 91Ghosh, A. K. et al. Aberrant regulation of pVHL levels by microRNA promotes the HIF/VEGF axis in CLL B cells. Blood 113, 5568-5574 (2009). 92Flintoft, L. Going for the double. Nature Reviews Cancer 4, 172-172 (2004). 93Natsume, A. et al. Girdin maintains the stemness of glioblastoma stem cells. Oncogene 31, 2715-2724 (2012). 94Enomoto, A. et al. Akt/PKB regulates actin organization and cell motility via Girdin/APE. Developmental cell 9, 389-402 (2005). 95Blanchoin, L., Boujemaa-Paterski, R., Sykes, C. & Plastino, J. Actin dynamics, architecture, and mechanics in cell motility. Physiological reviews 94, 235-263 (2014). 96Kitamura, T. et al. Regulation of VEGF-mediated angiogenesis by the Akt/PKB substrate Girdin. Nature cell biology 10, 329-337 (2008). 97Friedman, H. S. et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. Journal of Clinical Oncology 27, 4733-4740 (2009). 98Vredenburgh, J. J. et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. Journal of Clinical Oncology 25, 4722-4729 (2007). 99Guimarães, I. S. et al. Targeting the PI3K/AKT/mTOR Pathway in Cancer Cells. (2015). 100Engelman, J. A. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nature Reviews Cancer 9, 550-562 (2009). 101Yang, Q., Modi, P., Newcomb, T., Quéva, C. & Gandhi, V. Idelalisib: first-in-class PI3K delta inhibitor for the treatment of chronic lymphocytic leukemia, small lymphocytic leukemia, and follicular lymphoma. Clinical Cancer Research 21, 1537-1542 (2015). 102Herman, S. E. et al. Phosphatidylinositol 3-kinase-δ inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood 116, 2078-2088 (2010). 103Lannutti, B. J. et al. CAL-101, a p110δ selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood 117, 591-594 (2011). 104Singh, K., Sun, S. & Vezina, C. Rapamycin (AY-22,989), a new antifungal antibiotic. IV. Mechanism of action. The Journal of antibiotics 32, 630-645 (1979). 105Vezina, C., Kudelski, A. & Sehgal, S. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. The Journal of antibiotics 28, 721-726 (1975). 106Tsang, C. K., Qi, H., Liu, L. F. & Zheng, X. S. Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug discovery today 12, 112-124 (2007). 107Shafer, A., Zhou, C., Gehrig, P. A., Boggess, J. F. & Bae‐Jump, V. L. Rapamycin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and induction of apoptosis. International Journal of Cancer 126, 1144-1154 (2010). 108Oldham, S. & Hafen, E. Insulin/IGF and target of rapamycin signaling: a TOR de force in growth control. Trends in cell biology 13, 79-85 (2003). 109Fang, Y., Vilella-Bach, M., Bachmann, R., Flanigan, A. & Chen, J. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294, 1942-1945 (2001). 110Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177-189 (2002). 111Kim, D.-H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163-175 (2002). 112Huang, S. & Houghton, P. J. Targeting mTOR signaling for cancer therapy. Current opinion in pharmacology 3, 371-377 (2003). 113Bae‐Jump, V. L., Zhou, C., Boggess, J. F. & Gehrig, P. A. Synergistic effect of rapamycin and cisplatin in endometrial cancer cells. Cancer 115, 3887-3896 (2009). 114Temkin, S. M. & Fleming, G. Current treatment of metastatic endometrial cancer. Cancer control: journal of the Moffitt Cancer Center 16, 38 (2009). 115Burris, H. A. et al. Health‐related quality of life of patients with advanced breast cancer treated with everolimus plus exemestane versus placebo plus exemestane in the phase 3, randomized, controlled, BOLERO‐2 trial. Cancer 119, 1908-1915 (2013). 116Pavel, M. E. et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. The Lancet 378, 2005-2012 (2011). 117Martins, A., Vieira, H., Gaspar, H. & Santos, S. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: Tips for success. Marine drugs 12, 1066-1101 (2014). 118Gerwick, W. H. & Moore, B. S. Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chemistry & biology 19, 85-98 (2012). 119Rocha-Martin, J., Harrington, C., Dobson, A. D. & O''Gara, F. Emerging strategies and integrated systems microbiology technologies for biodiscovery of marine bioactive compounds. Marine drugs 12, 3516-3559 (2014). 120Garcia-Rocha, M., Garcia-Gravalos, M. & Avila, J. Characterisation of antimitotic products from marine organisms that disorganise the microtubule network: ecteinascidin 743, isohomohalichondrin-B and LL-15. British journal of cancer 73, 875 (1996). 121D''Incalci, M. & Galmarini, C. M. A review of trabectedin (ET-743): a unique mechanism of action. Molecular cancer therapeutics 9, 2157-2163 (2010). 122Research and Markets: Brain Tumor - Pipeline Assessment and Market Forecasts to 2017, (20170124) 取自http://www.businesswire.com/news/home/20110120005643/en/Research-Markets-Brain-Tumor---Pipeline-Assessment 123Castellino, R. C. & Durden, D. L. Mechanisms of Disease: the PI3K–Akt–PTEN signaling node—an intercept point for the control of angiogenesis in brain tumors. Nature Clinical Practice Neurology 3, 682-693 (2007). 124Sonoda, Y. et al. Akt pathway activation converts anaplastic astrocytoma to glioblastoma multiforme in a human astrocyte model of glioma. Cancer research 61, 6674-6678 (2001). 125Tang, S.-A. et al. In vitro antitumor activity of stellettin B, a triterpene from marine sponge Jaspis stellifera, on human glioblastoma cancer SF295 cells. Marine drugs 12, 4200-4213 (2014). 126Park, H.-J. et al. Human umbilical vein endothelial cells and human dermal microvascular endothelial cells offer new insights into the relationship between lipid metabolism and angiogenesis. Stem cell reviews 2, 93-101 (2006). 127Sylvest, L., Bendiksen, C. D. & Houen, G. Phosphatase inhibitors with anti‐angiogenic effect in vitro. Apmis 118, 49-59 (2010). 128Kung, H.-N., Yang, M.-J., Chang, C.-F., Chau, Y.-P. & Lu, K.-S. In vitro and in vivo wound healing-promoting activities of β-lapachone. American Journal of Physiology-Cell Physiology 295, C931-C943 (2008). 129Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the Folin phenol reagent. J biol Chem 193, 265-275 (1951). 130Wei, S. C. et al. Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nature cell biology 17, 678-688 (2015). 131Yu, L.-F., Cheng, Y., Qiao, M.-M., Zhang, Y.-P. & Wu, Y.-L. Activation of STAT3 signaling in human stomach adenocarcinoma drug-resistant cell line and its relationship with expression of vascular endothelial growth factor. World J Gastroenterol 11, 875-879 (2005). 132Nardinocchi, L., Puca, R., Sacchi, A. & D''Orazi, G. Inhibition of HIF-1alpha activity by homeodomain-interacting protein kinase-2 correlates with sensitization of chemoresistant cells to undergo apoptosis. Molecular cancer 8, 1 (2009). 133Zhang, Y.-J., Li, A.-J., Han, Y., Yin, L. & Lin, M.-B. Inhibition of Girdin enhances chemosensitivity of colorectal cancer cells to oxaliplatin. World journal of gastroenterology: WJG 20, 8229 (2014). 134Kazimi, N. & Cahill, G. M. Development of a circadian melatonin rhythm in embryonic zebrafish. Developmental Brain Research 117, 47-52 (1999). 135Akimenko, M.-A., Johnson, S. L., Westerfield, M. & Ekker, M. Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish. Development 121, 347-357 (1995). 136Malinda, K. M. In vivo matrigel migration and angiogenesis assay. Angiogenesis Protocols: Second Edition, 287-294 (2009). 137Lucidarme, O. et al. Angiogenesis model for ultrasound contrast research: exploratory study1. Academic radiology 11, 4-12 (2004). 138Salvesen, G. S. & Dixit, V. M. Caspases: intracellular signaling by proteolysis. Cell 91, 443-446 (1997). 139Datta, S. R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231-241 (1997). 140Zha, J., Harada, H., Yang, E., Jockel, J. & Korsmeyer, S. J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X L. Cell 87, 619-628 (1996). 141Zhou, H., Li, X.-M., Meinkoth, J. & Pittman, R. N. Akt regulates cell survival and apoptosis at a postmitochondrial level. The Journal of cell biology 151, 483-494 (2000). 142Green, D. R. & Reed, J. C. Mitochondria and apoptosis. Science 281, 1309 (1998). 143Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T. & Alnemri, E. S. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Molecular cell 1, 949-957 (1998). 144Zou, H., Li, Y., Liu, X. & Wang, X. An APAF-1· cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. Journal of Biological Chemistry 274, 11549-11556 (1999). 145Slee, E. A. et al. Ordering the cytochrome c–initiated caspase cascade: hierarchical activation of caspases-2,-3,-6,-7,-8, and-10 in a caspase-9–dependent manner. The Journal of cell biology 144, 281-292 (1999). 146Weng, H.-Y. et al. Zerumbone suppresses IKKα, Akt, and FOXO1 activation, resulting in apoptosis of GBM 8401 cells. Journal of biomedical science 19, 1 (2012). 147Rubenstein, J. L. et al. Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia 2, 306-314 (2000). 148Knizetova, P. et al. Autocrine regulation of glioblastoma cell-cycle progression, viability and radioresistance through the VEGF-VEGFR2 (KDR) interplay. Cell cycle 7, 2553-2561 (2008). 149Samoto, K. et al. Expression of vascular endothelial growth factor and its possible relation with neovascularization in human brain tumors. Cancer research 55, 1189-1193 (1995). 150Goel, H. L. & Mercurio, A. M. VEGF targets the tumour cell. Nature Reviews Cancer 13, 871-882 (2013). 151Yuan, G. et al. JSI-124 suppresses invasion and angiogenesis of glioblastoma cells in vitro. PloS one 10, e0118894 (2015). 152Méndez, O. et al. Knock down of HIF-1α in glioma cells reduces migration in vitro and invasion in vivo and impairs their ability to form tumor spheres. Molecular cancer 9, 1 (2010). 153Ji, X. et al. Knockdown of Nrf2 suppresses glioblastoma angiogenesis by inhibiting hypoxia‐induced activation of HIF‐1α. International journal of cancer 135, 574-584 (2014). 154Pawlus, M., Wang, L. & Hu, C. STAT3 and HIF1α cooperatively activate HIF1 target genes in MDA-MB-231 and RCC4 cells. Oncogene 33, 1670 (2014). 155Pathak, A. K. et al. Ursolic acid inhibits STAT3 activation pathway leading to suppression of proliferation and chemosensitization of human multiple myeloma cells. Molecular Cancer Research 5, 943-955 (2007). 156Su, Y. et al. JSI-124 inhibits glioblastoma multiforme cell proliferation through G2/M cell cycle arrest and apoptosis augmentation. Cancer biology & therapy 7, 1243-1249 (2008). 157Kim, M.-J. et al. OPB-31121, a novel small molecular inhibitor, disrupts the JAK2/STAT3 pathway and exhibits an antitumor activity in gastric cancer cells. Cancer letters 335, 145-152 (2013). 158Rins, J., Guma, M. & Schachtrup, C. NFksppaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-Ialpha. Nature 453, 807-811 (2008). 159LaGory, E. L. & Giaccia, A. J. The ever-expanding role of HIF in tumour and stromal biology. Nature cell biology 18, 356-365 (2016). 160Kujawski, M. et al. Stat3 mediates myeloid cell–dependent tumor angiogenesis in mice. The Journal of clinical investigation 118, 3367-3377 (2008). 161Spirina, L. V. et al. Expression of vascular endothelial growth factor and transcription factors HIF-1, NF-kB expression in squamous cell carcinoma of head and neck; association with proteasome and calpain activities. Journal of cancer research and clinical oncology 139, 625-633 (2013). 162Nakabayashi, H. & Shimizu, K. Involvement of Akt/NF-κB pathway in antitumor effects of parthenolide on glioblastoma cells in vitro and in vivo. BMC cancer 12, 1 (2012). 163Xie, T.-X., Xia, Z., Zhang, N., Gong, W. & Huang, S. Constitutive NF-κB activity regulates the expression of VEGF and IL-8 and tumor angiogenesis of human glioblastoma. Oncology reports 23, 725 (2010). 164Bai, D., Ueno, L. & Vogt, P. K. Akt‐mediated regulation of NFκB and the essentialness of NFκB for the oncogenicity of PI3K and Akt. International Journal of Cancer 125, 2863-2870 (2009). 165Jost, P. J. & Ruland, J. Aberrant NF-κB signaling in lymphoma: mechanisms, consequences, and therapeutic implications. Blood 109, 2700-2707 (2007). 166Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nature Reviews Cancer 2, 442-454 (2002). 167Pala, A., Wirtz, C. R., Karpel-Massler, G. & Halatsch, M.-E. Epithelial to mesenchymal transition and progression of glioblastoma. (INTECH Open Access Publisher, 2013). 168Isogai, S., Horiguchi, M. & Weinstein, B. M. The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Developmental biology 230, 278-301 (2001). 169Liu, X. et al. Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: an experimental analysis of the role of blood-brain barrier permeability, plasma protein binding, and brain tissue binding. Journal of Pharmacology and Experimental Therapeutics 313, 1254-1262 (2005). 170Sakariassen, P. Ø. et al. Angiogenesis-independent tumor growth mediated by stem-like cancer cells. Proceedings of the National Academy of Sciences 103, 16466-16471 (2006). 171Wong, E. T. & Brem, S. Taming glioblastoma: targeting angiogenesis. Journal of Clinical Oncology 25, 4705-4706 (2007).
|