1.Barker, D. M., Huang, W., Guo, Y. R., and Bourgeois, A. (2003). A three-dimensional variational (3DVAR) data assimilation system for use with MM5. NCAR Tech Note, 68.
2.Barker, D. M., Huang, W., Guo, Y. R., Bourgeois, A. J., and Xiao, Q. N. (2004). A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Monthly Weather Review, 132(4), 897-914.
3.Bergthórsson, P., and Döös, B. R. (1955). Numerical Weather Map Analysis. Tellus, 7(3), 329-340.
4.Bjornsson, H., and Venegas, S. A. (1997). A manual for EOF and SVD analyses of climatic data. CCGCR Report, 97(1), 112-134.
5.Charney, J. G., Fjörtoft, R., and Neumann, J. V. (1950). Numerical integration of the barotropic vorticity equation. Tellus, 2(4), 237-254.
6.Courtier, P. (1997). Dual formulation of four‐dimensional variational assimilation.Quarterly Journal of the Royal Meteorological Society, 123(544), 2449-2461.
7.Cressman, G. P. (1959). An operational objective analysis system. Monthly Weather Review, 87(10), 367-374.
8.Cummings, J. A. (2005). Operational multivariate ocean data assimilation. Quarterly Journal of the Royal Meteorological Society, 131(613), 3583-3604.
9.Cummings, J. A., and Smedstad, O. M. (2013). Variational data assimilation for the global ocean. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II), 303-343. Springer Berlin Heidelberg.
10.Daley, R. (1991). Atmospheric data analysis, Cambridge atmospheric and space science series. Cambridge University Press, 6966, 25.
11.Daley, R. (1993). Atmospheric data analysis (No. 2). Cambridge university press.
12.Derber, J., and Bouttier, F. (1999). A reformulation of the background error covariance in the ECMWF global data assimilation system. Tellus A, 51(2), 195-221.
13.Derber, J., and Rosati, A. (1989). A global oceanic data assimilation system. Journal of Physical Oceanography, 19(9), 1333-1347.
14.Emanuel, K. (2010). Tropical cyclone activity downscaled from NOAA‐CIRES reanalysis, 1908–1958. Journal of Advances in Modeling Earth Systems, 2(1).
15.Gandin, L. S. (1965). Objective Analysis of Meteorological Fields. Israel Program for Scientific Translation.
16.Huang, X. Y., Xiao, Q., Barker, D. M., Zhang, X., Michalakes, J., Huang, W., and Dudhia, J. (2009). Four-dimensional variational data assimilation for WRF: formulation and preliminary results. Monthly Weather Review, 137(1), 299-314.
17.Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of basic Engineering, 82(1), 35-45.
18.Lewis, J. M., and Derber, J. C. (1985). The use of adjoint equations to solve a variational adjustment problem with advective constraints. Tellus A, 37(4), 309-322.
19.Li, Y., Wang, X., and Xue, M. (2012). Assimilation of radar radial velocity data with the WRF hybrid ensemble–3DVAR system for the prediction of Hurricane Ike (2008). Monthly Weather Review, 140(11), 3507-3524.
20.Li, Z., Chao, Y., McWilliams, J. C., and Ide, K. (2008). A three-dimensional variational data assimilation scheme for the regional ocean modeling system. Journal of Atmospheric and Oceanic Technology, 25(11), 2074-2090.
21.Li, Z., Chao, Y., McWilliams, J. C., and Ide, K. (2008). A three‐dimensional variational data assimilation scheme for the Regional Ocean Modeling System: Implementation and basic experiments. Journal of Geophysical Research: Oceans, 113(C5).
22.Lorenc, A. C. (1986). Analysis methods for numerical weather prediction. Quarterly Journal of the Royal Meteorological Society, 112(474), 1177-1194.
23.Parrish, D. F., and Derber, J. C. (1992). The National Meteorological Center''s spectral statistical-interpolation analysis system. Monthly Weather Review, 120(8), 1747-1763.
24.Ravela, S., Emanuel, K., and McLaughlin, D. (2007). Data assimilation by field alignment. Physica D: Nonlinear Phenomena, 230(1), 127-145.
25.Sasaki, Y. (1970). Some basic formalisms in numerical variational analysis. Monthly Weather Review, 98(12), 875-883.
26.Sasaki, Y. K. (1958). An objective analysis based on the variational method.
27.Talagrand, O., and Courtier, P. (1987). Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory. Quarterly Journal of the Royal Meteorological Society, 113(478), 1311-1328.
28.Terpstra, F. P. (2008). Scientific workflow design: theoretical and practical issues.
29.Tyndall, D. P. (2010). An investigation of strong and weak constraints to improve variational surface analyses. (Doctoral dissertation, The University of Utah).
30.Vandenberghe, F., and Kuo, Y. H. (1999). Introduction to the MM5 3D-VAR data assimilation system: Theoretical basis. NCAR/MMM Tech. Doc.
31.方長芳、張翔、尹建平 (2013) 21 世纪初海洋預報系統發展現狀和趨勢,海洋預報,第30卷,第4期,頁93-102。
32.王桂芝,吳誠鷗,朱克云,秦偉良,王順風 (2002) 關於四維變分同化方法目標函數的權矩陣,氣象科學,第22卷,第4期,頁444-449。
33.王曼、李華宏、段旭、劉建宇、符睿、陳新梅 (2011) WRF模式三維變分中背景誤差協方差估計,應用氣象學報,第22卷,第4期,頁482-492。
34.王躍山 (1999) 數據同化-它的緣起、含意和主要方法,海洋預報,第16卷,第1期,頁11~20。
35.朱立娟 (2005) 背景場誤差協方差估计技術的應用研究,南京信息工程大學大氣物理與大氣環境,碩士論文。
36.林肯迪 (2012) 潮汐預報模式資料同化可行性研究,國立中山大學海洋環境及工程學系碩士論文。37.馬寨璞、井愛芹 (2005) 海洋科學中的數據同化方法—意義,結構與發展現狀,海岸工程,第24卷,第4期,頁83-99。
38.屠偉銘,張躍堂 (1995) 全球最優插值客觀分析,氣象學報,第53卷,第2期,頁148-156。
39.張華、薛紀善、庄世宇、朱國富、朱宗申 (2004) GRAPeS 三維變分同化系統的理想試驗,氣象學報,第62卷,第1期,頁31-41。
40.曾忠一 (2006) 大氣科學中的反問題-反演、分析與同化(上),臺北市:國立編譯館。
41.曾腊梅 (2014) 背景場誤差協方差模擬對資料同化及數值預報效果的影響,南京信息工程大學大氣科學學院氣象學專業,碩士論文。
42.鄒曉蕾 (2009) 資料同化理論與應用(上冊),北京:氣象出版社。
43.熊春暉、張立鳳、關吉平、陶恒銳、蘇佳佳 (2013) 集合—變分數據同化方法的發展與應用,地球科学進展,第28卷,第6期,頁648-656。
44.趙延來、黄思訓、章维峰、杜華棟 (2013) 三維變分同化中多變量平衡約束設計,大氣科學學報,第36卷,第3期,頁277-285。
45.龔建東,邱崇踐,王強,陳偉民 (1999) 區域四維變分資料同化的數值試驗,氣象學報,第57卷,第2期,頁131-142。