(3.220.231.235) 您好!臺灣時間:2021/03/09 06:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇翔筵
研究生(外文):Hsiang-yen Su
論文名稱:基因轉殖提高藍綠菌光合作用效率及逆境耐受性
論文名稱(外文):Enhancement of Photosynthetic Efficiency and Stress Tolerance in Transgenic Cyanobacteria
指導教授:周德珍陳顯榮陳顯榮引用關係
指導教授(外文):Chow, Te-JinChen, Hsien-Jung
學位類別:博士
校院名稱:國立中山大學
系所名稱:海洋生物科技博士學位學程
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:161
中文關鍵詞:戶外培養逆境耐受性碳水化合物光合作用carbonic anhydraseHCO3 - transporter
外文關鍵詞:carbonic anhydraseHCO3 - transportercarbohydratephotosynthesisstress toleranceoutdoor cultivation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:85
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於大量使用化石燃料,造成大氣中的CO2含量大幅增加,導致全球暖化與天然資源的短缺,為全球永續發展帶來巨大的挑戰(Intergovernmental Panel on Climate Change, 2007)。藻類中的微藻CO2固定效率及生產力遠大於高等植物, 且可直接利用煙道氣之CO2,進行固碳及生產有用物質及生物燃料 (biofuel),例如醣類、油脂等,大規模戶外養殖微藻以固定CO2被認為是減少大氣中CO2濃度的可行方法之一 (Murakami and Ikenouchi, 1997)。因此篩選出高光合固碳效率微藻藻株是有效固定CO2的開發關鍵。目前以天然篩選的藻株進行CO2固定的效率方線之研究仍然有限,且其CO2固定效率遠小於化學方法,因此利用基因工程手段提供另一種方法,除了可以提高微藻光合固碳效率外,也可藉由代謝路徑的修飾,使微藻生產大量高價值的副產物,包括糖、纖維素、酒精、氫氣、異丁醇等 (Ducat et. al., 2012),因此藉由基因工程方式開發高效能的光合作用固碳藻株,以供後續生產利用,被認為是目前相當有潛力的方法之一。
本研究目的以基因轉殖方式建構高效能藍綠菌(Synechococcus elongatus PCC7942)之carbohydrate生產藻株,藉由提高ribulose 1,5-bisphosphate carboxylase/ oxygenase (RuBisCO)週邊CO2濃度、提高耐高溫能力,使成為適合在戶外光反應管以CO2氣體進行carbohydrate生產。研究策略為:1. 建構高光合作用效率的S. elongatus PCC7942: 以逐步轉殖CO2濃縮機轉 (CO2-concentration mechanism) 之HCO3- transporter (ictB及 BicA)、carbonic anhydrase (icfA及ecaA),獲得具[高HCO3- 吸收能力並可將HCO3-轉換為CO2]之高光合作用效率轉殖藻株。 2. 建構耐逆境之轉殖藻株: 過量表現osmotin與hspA於高光合作用效率轉殖藻株及確認osmotin與hspA轉殖藻株逆境耐受性。 3. 共轉殖HCO3- transporter (ictB)、carbonic anhydrase (ecaA)之相關基因於纖維素合成轉殖藻株以生產carbohydrate。
結果發現與野生型相比,培養於添加NaHCO3培養基和通入5% CO2時,HCO3- transporter (ictB、BicA) 與carbonic anhydrase (icfA、ecaA)轉殖細胞光合速率及生物量明顯增加。藍綠菌S. elongatus PCC7942表現逆境耐受性相關基因(osmotin、 hspA)後,也提高了藻株的耐逆境能力,使其可在戶外利用海水培養,而產生的碳水化合物可做為生物精煉之原料。在藍綠菌S. elongatus PCC7942中表現細菌纖維素合成之acsAB基因,可有效提高藍綠菌之碳水化合物, 同時在細胞中表現HCO3- transporter與carbonic anhydrase的相關基因ictB、ecaA後,可以促進光合作用和細胞生長的速率,並提高其生物量和碳水化合物產率。
本研究預期效益為創造可以在戶外高溫環境生長快速及生產carbohydrate之高光合作用效率轉殖藍綠菌,降低養殖微藻固定CO2及生產生物燃料之成本,克服微藻生質能工業化生產之關鍵。
An increase in atmospheric CO2 and fuel shortage resulted from the overuse of fossil fuel pose tremendous challenges to global sustainability (Intergovernmental Panel on Climate Change, 2007). Microalgae have much higher CO2 fixation rates and productivity than higher plants. They can directly use CO2 from flue gas, and convert it into biomass, which then be used to produce valuable products and biofuels, such as sugars, lipids, etc. Therefore, CO2 fixation by outdoor cultivation of microalgae has been considered as one of the feasible approaches for CO2 mitigation and biofuel production (Murakami and Ikenouchi, 1997). While the CO2 fixation efficiency of microalgae isolated from natural environment is still low compared to that of the chemical fixation methods, using genetic engineering of microalgae to achieve high photosynthetic efficiency and greater ability to convert CO2 to high value products, such as sugar, cellulose, ethanol, H2, and isobutunol (Ducat et. al., 2012) will be a promising approach for CO2 bio-fixation. Therefore, developing microalgae with high photosynthetic efficiency is a viable approach to mitigate biological CO2 and achieve sustainable biofuels production.
The objective of this study is to construct efficient carbohydrate producing cyanobacteria (Synechococcus elongatus PCC7942) with the ability to grow under outdoor conditions in high CO2 concentration and heat, by genetic engineering. This objective will be accomplished through the following approaches: 1. Developing S.elongatus PCC7942 with high photosynthetic efficiency: CO2 Concentrating Mechanism (CCM) genetically engineered cyanobacteria are constructed by co-expression of bicarbonate transporter (ictB, BicA), and carbonic anhydrase (ecaA, icfA) in S. elongatus PCC7942. 2. Construction of stresses tolerance transgenic strains by expressing osmotin and hspA in S. elongatus PCC7942. 3. Construction of high CO2 fixing transgenic strains with production of carbohydrate by co-expressing HCO3- transporter (ictB)、carbonic anhydrase (ecaA) in cellulose synthesis (acsAB) S. elongatus strains.
Compared with the wild type, overexpressing HCO3- transporter (ictB, BicA), carbonic anhydrase (icfA、ecaA) significantly increased cell growth and photosynthesis rates, when the cells grown in 5% CO2, in medium supplemented with NaHCO3. The expression of the partial cellulose synthase genes, acsAB, improved carbohydrate productivity of S. elongatus PCC7942. The expression of hspA and osmotin conferred tolerances to multiple stresses encountered during outdoor cultivation and both maximum biomass and glucose productivities by S. elongatus PCC7942 transformed cells in closed outdoor photobioreactor with sea water were improved, the carbohydrates can be used as bio-refinery feedstock. Co-expressing HCO3- transporter (ictB) , carbonic anhydrase (ecaA), and bacterial cellulose (acsAB) significantly improved its biomass productivity and total carbohydrate productivity.
The expected result of this study is to obtain high CO2 fixing cyanobacteria that can tolerate the high temperature of outdoor cultivation for carbohydrate production. It will certainly reduce the cost of microalgae cultivation and biofuel production.
Verification letter from the Oral Examination Committee i
Acknowledgements ii
Abstract in Chinese iii
Abstract in English v
Contents vii
List of Figures xii
List of Tables xv
Chapter 1. Introduction 1
1.1. General background 1
1.2. Aim of this study 6
1.3. References 9
Chapter 2. Enhancement of photosynthetic efficiency and biomass by overexpressing bicarbonate transporters and carbonic anhydrase in synechococcus elongatus PCC7942 13
2.1 Abstract 13
2.2 Introduction 14
2.3 Materials and methods 17
2.3.1 Bacterial strains 17
2.3.2 Growth conditions 17
2.3.3 Vector construction 17
2.3.4 Transformation of cyanobacteria cells and selection of positive clones 18
2.3.5 RNA isolation and RT-PCR 19
2.3.6 Protein extraction 19
2.3.7 Electrophoresis and Immunoblotting 20
2.3.8 Growth of cyanobacteria under 5% CO2 in air 20
2.3.9 Biomass Quantification 21
2.3.10 Determination of growth biomass productivity 21
2.3.11 Determination of CO2 fixation rate 21
2.3.12 Measurements of photosynthetic oxygen evolution 22
2.3.13 Determination of chlorophyll a contents 22
2.3.14 Determination of carbon content 23
2.3.15 Statistical analysis 23
2.4 Results 24
2.4.1 Genetic engineering of cyanobacteria S. elongatus PCC7942 with over-expression of GFP, ictB, BicA, ecaA, and icfA 24
2.4.2 Investigation of rbcL promoter activity in S. elongatus PCC7942 grown under different levels of light intensities and CO2 concentrations 24
2.4.3 Physiological and biochemical characterization of bicarbonate transporter ictB and BicA transgenic strains of S. elongatus PCC7942 26
2.4.3.1 Construction and analysis of bicarbonate transporter ictB and BicA transgenic strains 26
2.4.3.2 Evaluation of the effects of overexpresson of ictB and BicA on photosynthesis efficiency, growth performance and biomass production in 5% CO2 26
2.4.4 Physiological and biochemical characterization of carbonic anhydrase ecaA and icfA transgenic strains of S. elongatus PCC7942 28
2.4.4.1 Construction and analysis of carbonic anhydrase ecaA and icfA transgenic strains 28
2.4.4.2 Evaluation of the effects of overexpresson of ecaA and icfA on photosynthesis efficiency, growth performance and biomass production in 5% CO2 28
2.5 Discussion 30
2.6 Conclusions 32
2.7 References 33
Chapter 3. Enhancement of outdoor seawater culture efficiency in a freshwater cyanobacterium by heterologous expression of hspA and osmotin genes 57
3.1. Abstract 57
3.2. Introduction 58
3.3. Materials and Methods 61
3.3.1 Bacterial strains 61
3.3.2 Plasmids and strains construction 61
3.3.3 Growth conditions 62
3.3.4 RNA isolation and RT-PCR 62
3.3.5 Growth of transgenic strains under high temperature conditions 63
3.3.6 Growth of transgenic strains under high light conditions 63
3.3.7 Growth of transgenic strains under different salt concentration 63
3.3.8 Growth of transgenic strains in closed photobioreactor with seawater under outdoor cultures conditions 64
3.3.9 Determination of chlorophyll a contents 64
3.3.10 Measurements of photosynthetic oxygen evolution 65
3.3.11 Determination of glucose content of S. elongatus PCC7942 transgenic strains 65
3.3.12 Statistical analysis 66
3.4. Results 67
3.4.1 Construction and analysis of osmotin and hspA expression strain of S. elongatus PCC7942 67
3.4.2 Effects of overexpression hspA and osmotin genes on cell growth, photosynthesis rates of S. elongatus PCC7942 68
3.4.3 Effect of high temperature on cell growth, photosynthesis rates of S. elongatus PCC7942 transgenic strains 69
3.4.4 Effect of high light on cell growth, photosynthesis rates of S. elongatus PCC7942 transgenic strains 69
3.4.5 Effects of salt stress on cell growth and photosynthesis rates of S. elongatus PCC7942 transgenic strains 70
3.4.6 Increased outdoor photobioreactor culture efficiency in seawater by overexpression of hspA and osmotin genes 71
3.5. Discussion 74
3.6. Conclusions 78
3.7. References 79
Chapter 4. Co-expressing ictB, ecaA, and acsAB and stress tolerance genes in Synechococcus elongatus, to increase production of carbohydrate and improved outdoor culture efficiency 106
4.1. Abstract 106
4.2. Introduction 107
4.3. Materials and Methods 110
4.3.1 Bacterial strains 110
4.3.2 Growth conditions 110
4.3.3 Plasmids and strains construction 110
4.3.4 RNA isolation and RT-PCR 112
4.3.5 Measurements of photosynthetic oxygen evolution 112
4.3.6 Determination of carbohydrate content 112
4.3.7 Growth of transgenic strains in closed photobioreactor under outdoor cultures conditions 113
4.3.8 Statistical analysis 113
4.4. Results 114
4.4.1 Analysis of acsAB over-expression strain of S. elongatus PCC7942 114
4.4.2 Construction of S. elongatus PCC7942 strains co-expressing ictB, ecaA, and acsAB 115
4.4.3 Effect of co-expression of ictB, ecaA, and acsAB on cell growth and photosynthesis rates of S. elongatus PCC7942 116
4.4.4 Effect of co-expression of ictB, ecaA, and acsAB on carbohydrate productivity of S. elongatus PCC7942 117
4.4.5 Effect of co-expression of hspA or osmotin on outdoor photobioreactor culture efficiency in the ictB, ecaA, and acsAB co-expressing strain of S. elongatus PCC7942 118
4.5. Discussion 120
4.6. Conclusions 122
4.7. References 123
Chapter 5. Conclusions 143
Chapter 1
1.Andersson, C.R., Tsinoremas, N.F., Shelton, J., Lebedeva, N.V., Yarrow, J., Min, H., Golden, S.S., 2000. Application of bioluminescence to the study of circadian rhythms in cyanobacteria. Methods Enzymol. 305, 527-542.
2.Atsumi, S., Higashide, W., Liao, J.C., 2009. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat. Biotechnol. 27, 1177-1180.
3.Borowitzka, M.A., 1999. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J. Biotechnol. 70, 313-21.
4.Chang, E.H., Yang, S.S., 2003. Some characteristics of microalgae isolated in Taiwan for biofixation of carbon dioxide. Bot. Bul. Acad. Sin. 44, 43-52.
5.Chen, P.H., Liu, H.L, Chen, Y.J., Cheng, Y.H., Lin, W.L., Yeh, C.H., Chang, C.H., 2012. Enhancing CO2 bio-mitigation by genetic engineering of cyanobacteria, Energy Environ. Sci. 5, 8318-8327.
6.Chisti Y., 2007. Biodiesel from microalgae. Biotechnol. Adv. 25, 294-306.
7.Chiu, S.Y., Kao, C.Y., Chen, C.H., Kuan, T.C., Ong, S.C., Lin, C.S., 2008. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour. Technol. 99, 3389-3396.
8.D’Alessandro, D.M., Smit, B., Long, J.R., 2010. Carbon dioxide capture: prospects for new materials, Angew. Chem. Int. Ed. 49, 6058-6082.
9.Deng, M., Coleman, J.R., 1999. Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol. 65, 523-528.
10.Ducat, D.C., Avelar-Rivas, J.A., Way, J.C., Silver, P.A., 2012. Rerouting carbon flux to enhance photosynthetic productivity. Appl. Environ. Microbiol. 78, 2660-2668.
11.Energy Information Administration. International Energy Outlook., 2009. US Department of Energy, Washington, DC, http://www.eia.doe.gov/oiaf/ieo/pdf/0484(2009).pdf.
12.Golden, S.S., Brusslan, J., Haselkorn, R., 1987. Genetic engineering of the cyanobacterial chromosome. Methods Enzymol. 153, 215-231.
13.Gutierrez, R., Gutierrez-Sanchez, R., Nafidi, A., 2008. Trend analysis using nonhomogeneous stochastic diffusion processes. Emission of CO2; Kyoto protocol in Spain. Stoch. Environ. Res. Risk Assess. 22, 57-66.
14.Ho, S.H, Chen, C.Y., Chang, J.S., 2012. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 113, 244-252.
15.Hsueh, H.T., Li, W.J., Chen, H.H., Chu, H., 2009. Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. CL-1 and Nannochloropsis oculta. J. Photochem. Photobiol. B, Biol. 95, 33-39.
16.Huntley, M., Redalje, D., 2007. CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig. Adapt. Strategies Glob. Change 12, 573-608.
17.Intergovernmental Panel on Climate Change–IPCC., 2007. Climate Change 2007: Synthesis Report, United Nations.
18.Kay, R.A., 1991. Microalgae as food and supplement. Crit. Rev. Food Sci. Nutr. 30, 555–573.
19.Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., Malcata, F., Langenhove, H., 2010. Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol. 28, 371–380.
20.Lackne, K.S., 2003. Climate Change: A guide to CO2 sequestration. Science, 300, 1677-1678.
21.Lan, E.I., Liao, J.C., 2011. Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab. Eng. 13, 353-363.
22.Li, Y., Horsman, M., Wu, N., Lan, C.Q., Dubois-Calero, N., 2008a. Biofuels from microalgae. Biotechnol. Prog. 24, 815–820.
23.Li, Y., Horsman, M., Wang, B., Wu, N., Lan, C.Q., 2008b. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 81, 629–636.
24.Lu, X.f., 2010. A perspective: Photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. Biotechnol. Adv. 28, 742-746.
25.Murakami, M., Ikenouchi, M., 1997. The biological CO2 fixation and utilization project by RITE (2): Screening and breeding of microalgae with high capability in fixing CO2. Energy Convers. Manage. 38, 493-497
26.Niederholtmeyer, H., Wolfstadter, B.T., Savage, D.F., Silver, P. A. and Way, J.C., 2010. Engineering cyanobacteria to synthesize and export hydrophilic products. Appl. Environ. Microbiol. 76, 3462-3466.
27.Ramanathan, V., 1988. The greenhouse theory of climate change: a test by an inadvertent global experiment. Science. 240, 293-299.
28.Ruffing, A.M., 2011. Engineered cyanobacteria: teaching an old bug new tricks. Bioeng. Bugs. 2, 136-149.
29.Vioque, A., 2007. Transformation of cyanobacteria. Adv. Exp. Med. Biol. 616, 12-22.
30.Watson, R.T., and Core Writing Team., 2001. Climate change: Synthesis report. IPCC, Cambridge University Press.
31.Zeng, X.-H., Danquah, M.K., Chen, X.D., Lu, Y.-H., 2011. Microalgae bioengineering: from CO2 fixation to biofuel production. Renew. Sustain. Energy Rev. 15, 3252-3260.
32.Zheng, Y., Chen, Z.A., Lu, H.B., Zhang, W., 2011. Optimization of carbon dioxide fixation and starch accumulation by Tetraselmis subcordiformis in a rectangular airlift photobioreactor. African J. Biotechnol. 10, 1888-1901.

Chapter 2
1.Andersson, C.R., Tsinoremas, N.F., Shelton, J., Lebedeva, N.V., Yarrow, J., Min, H., and Golden, S.S., 2000. Application of bioluminescence to the study of circadian rhythms in cyanobacteria. Methods Enzymol. 305, 527-542.
2.Arnon, D.I., 1949. Copper enzyme in isolated chloroplasts. Polyphenoloxydase in Beta vulgaris. Plant Physiol. 24, 1-15.
3.Badger, M.R., Andrews, T.J., Whitney, S.M., Ludwig, M., Yellowlees, D.C., Leggat, W., Price, G.D., 1998. The diversity and coevolution of rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can. J. Bot. 76, 1052–1071.
4.Badger, M.R. Hanson, D., Price, G.D., 2002. Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Funct. Plant Biol. 29, 161-173.
5.Badger, M. R. and Price, G. D., 1994. The role of carbonic anhydrase in photosynthesis. Annu. Rev. Plant Physiol. 45, 369-392.
6.Badger, M.R., Price, G.D., 2003. CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J. Exp. Bot. 54, 609-622.
7.Bonfil, D.J., Ronen-Tarazi, M., Sultemeyer, D., Lieman-Hurwitz, J., Schatz, D. and Kaplan, A., 1998. A putative HCO3- transporter in the cyanobacterium Synechococcus sp. strain PCC 7942. FEBS Lett. 430, 236-240.
8.Bradford, M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
9.Chen, P.H., Liu, H.L, Chen, Y.J., Cheng, Y.H., Lin, W.L., Yeh, C.H., Chang, C.H., 2012. Enhancing CO2 bio-mitigation by genetic engineering of cyanobacteria, Energy Environ. Sci. 5, 8318-8327.
10.Coleman, J. R., 1991. The molecular and biochemical analyses of CO2 concentrating mechanisms in cyanobacteria and green algae. Plant Cell Environ. 14, 861-867.
11.Fukuzawa, H., Suzuki, E., Komukai, Y. and Miyachi, S., 1992. A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon dioxide fixation by Synechococcus PCC7942. Proc. Natl. Acad. Sci. U. S. A. 89, 4437-4441.
12.Giordano, M., Beardall, J., Raven, J.A., 2005. CO2 concentrating mechanisms in algae mechanisms: environmental modulation, and evolution. Annu. Rev. Plant Biol. 56, 99-131.
13.Golden, S.S., Brusslan, J., Haselkorn, R., 1987. Genetic engineering of the cyanobacterial chromosome. Methods Enzymol. 153, 215-231.
14.Hakimi, M.A., Privat, I., Valay, J.G., Lerbs-Mache, S., 2000. Evolutionary conservation of C-terminal domains of primary sigma(70)-type transcription factors between plants and bacteria. J. Biol. Chem. 275, 9215-9221
15.Hewett-Emmett, D. and Tashian, R. E., 1996. Functional diversity, conservation, and convergence in the evolution of α-, β-, and γ-carbonic anhydrase gene families. Mol. Phylogenet. Evol. 5, 50-77.
16.Ho, S.H, Chen, C.Y., Chang, J.S., 2012. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 113, 244-252.
17.Ho, S.H., Chen, C.Y., Lee, D.J., Chang, J.S., 2011. Perspectives on microalgae CO2-emission mitigation systems - A review. Biotechnol. Adv. 29, 189-198.
18.Intergovernmental Panel on Climate Change–IPCC., 2007. Climate Change 2007: Synthesis Report, United Nations.
19.Jones, H.G., 1992. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology, 2nd edition., Cambridge University Press, ISBN 9780521425247, Cambridge, UK.
20.Kaplan, A., Reinhold, L., 1999. CO2 concentrating mechanisms in photosynthetic microorganisms. Annu Rev Plant Physiol Plant Mol Biol. 50, 539-570.
21.Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680-685.
22.Lieman-Hurwitz J., Rachmilevitch S., Mittler R., Marcusb Y. and Kaplan A., 2003. Enhanced photosynthesis and growth of transgenic plants that express ictB, a gene involved in HCO3–accumulation in cyanobacteria. Plant Biotechnol J. 1, 43-50.
23.Miller, J.H., 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
24.Price, G.D., 2011. Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism. Photosynth. Res. 109, 47-57.
25.Price, G.D., Badger, M.R., Woodger, F.J., Long, B.M., 2008. Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot. 59, 1441-1461.
26.Price, G.D., Woodger, F.J., Badger, M.R., Howitt, S.M., Tucker, L., 2004. Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc. Natl. Acad. Sci. U. S. A. 101, 18228-18233.
27.Rippka, R., J. Deruelles, J. Waterbury, M. Herdman and R. Stanier., 1979. Genericassignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1-61.
28.Shibata, M., Katoh, H., Sonoda, M., Ohkawa, H., Shimoyama, M., Fukuzawa, H., Kaplan, A., Ogawa, T., 2002. Genes essential to sodium-dependent bicarbonate transport in cyanobacteria: function and phylogenetic analysis. J. Biol. Chem. 277, 18658-18664.
29.So, A.K.C., Espie, G. S., 1998. Cloning, characterization and expression of carbonic anhydrase from the cyanobacterium Synechocystis PCC6803. Plant Mol. Biol. 37, 205-215.
30.So, A.K.C., Espie, G. S., 2005. Cyanobacterial carbonic anhydrases. Can. J. Bot. 83, 721-734.
31.Soltes-Rak, E., Mulligan, M.E., Coleman, J.R., 1997. Identification and characterization of a gene encoding a vertebrate-type carbonic anhydrase in cyanobacteria. J. Bacteriol. 179, 769-774.
32.Su, H.Y., Lee, T.M., Huang, Y.L., Chou, S.H., Wang, J. B., Lin, L. F., Chow, T. J., 2011. Increased cellulose production by heterologous expression of cellulose synthase genes in a filamentous heterocystous cyanobacterium with a modification in photosynthesis performance and growth ability. Bot Stud. 52, 265-275.
33.Tashian, R.E., 1989. The carbonic anhydrases: widening perspectives on their evolution, expression and function. Bioessays. 10, 186-92.
34.Towbin, H., Staehelin, T., Gordon, J., 1979. Electrophoretic Transfer of Proteins from Polyacrylamide Gels to Nitrocellulose Sheets: Procedure and Some Applications. Proc. Natl. Acad. Sci. U. S. A. 76, 4350-4354.
35.Yu, J.W., Price, G.D., Song, L., Badger, M.R., 1992. Isolation of a putative carboxysomal carbonic anhydrase gene from the cyanobacterium Synechococcus PCC7942. Plant Physiol. 100, 794-800.

Chapter 3
1.Angermayr, S. A., Rovira, A. G., Hellingwerf, K. J., 2015. Metabolic engineering of cyanobacteria for the synthesis of commodity products. Trends Biotechnol. 33, 352-361.
2.Arnon, D.I. 1949. Copper enzyme in isolated chloroplasts. Polyphenoloxydase in Beta vulgaris. Plant Physiol. 24, 1-15.
3.Bartley, M.L., Boeing, W.J., Corcoran, A.A., Holguin, F.O., Schaub, T., 2013. Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms. Biomass Bioenergy. 54, 83-88.
4.Basha, E., Lee, G. J., Breci, L. A., Hausrath, A. C., Buan, N. R., Giese, K. C., Vierling, E., 2004. The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions. J. Biol. Chem. 279, 7566-7575.
5.Chen, C.Y., Yeh, K.L., Aisyah, R., Lee, D.J., Chang, J.S., 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour. Technol. 102, 71-81.
6.Chiu, P.H., Soong, K., Chen, C.N., 2016. Cultivation of two thermotolerant microalgae under tropical conditions: Influences of carbon sources and light duration on biomass and lutein productivity in four seasons. Bioresour. Technol. 212, 190-198.
7.Chow, T.J., Su, H.Y., Tsai, T.Y., Chou, H.H., Lee, T.M., Chang, J.S., 2014. Using recombinant cyanobacterium (Synechococcus elongatus) with increased carbohydrate productivity as feedstock for bioethanol production via separate hydrolysis and fermentation process. Bioresour. Technol. 184, 33-41.
8.Cuaresma, M., Janssen, M., Vilchez, C., Wijffels, R.H., 2011. Horizontal or vertical photobioreactors? How to improve microalgae photosynthetic efficiency. Bioresour. Technol. 102, 5129-5137.
9.Farooq, W., Suh, W.I., Park, M.S., Yang, J.W., 2015. Water use and its recycling in microalgae cultivation for biofuel application. Bioresour. Technol. 184, 73-81.
10.Franz, A., Lehr, F., Posten, C., Schaub, G., 2012. Modeling microalgae cultivation productivities in different geographic locations – estimation method for idealized photobioreactors. Biotechnol. J. 4, 546-557.
11.Garzon-Sanabria, A.J., Davis, R.T., Nikolov, Z.L., 2012. Harvesting Nannochloris oculata by inorganic electrolyte flocculation: effect of initial cell density, ionic strength, coagulant dosage, and media pH. Bioresour. Technol. 118, 418-424
12.Golden, S.S., Brusslan, J., Haselkorn, R., 1987. Genetic engineering of the cyanobacterial chromosome. Methods Enzymol. 153, 215-231.
13.Guieysse, B., Béchet, Q., Shilton, A., 2013. Variability and uncertainty in water demand and water footprint assessments of fresh algae cultivation based on case studies from five climatic regions. Bioresour. Technol. 128, 317-323.
14.Hannon, M., Gimpel, J., Tran, M., Rasala, B., Mayfield, S., 2010. Biofuels from algae: challenges and potential. Biofuels. 1, 763-784.
15.Heidorn, T., Camsund, D., Huang, H.H., Lindberg, P., Oliveira, P., Stensjo, K., Lindblad, P., 2011. Synthetic biology in cyanobacteria: engineering and analyzing novel functions. Methods in Enzymology. 497, 539-579.
16.Ho, S.H., Lu, W.B., Chang, J.S., 2012. Photobioreactor strategies for improving the CO2 fixation efficiency of indigenous Scenedesmus obliquus CNW-N: statistical optimization of CO2 feeding, illumination, and operation mode. Bioresour. Technol. 105, 106-113.
17.Kappe, G., Leunissen, J.A., de Jong, W.W., 2002. Evolution and diversity of prokaryotic small heat shock proteins. Prog. Mol. Subcell. Biol. 28, 1-17.
18.Kumar, K., Dasgupta, C.N., Nayak, B., Lindblad, P., Das, D., 2011. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour. Technol. 102, 4945-4953.
19.Kumar, S.A., Kumari, P.H., Kumar, G.S., Mohanalatha, C., Kavi Kishor, P.B., 2015. Osmotin: a plant sentinel and a possible agonist of mammalian adinopectin. Front. Plant. Sci. 6, 163.
20.Lee, J., Sim, S.J., Bott, M., Um, Y., Oh, M.K., Woo, H.M., 2014. Succinate production from CO₂-grown microalgal biomass as carbon source using engineered Corynebacterium glutamicum through consolidated bioprocessing. Sci. Rep. 4, 5819.
21.Lee, S., Owen, H.A., Prochaska, D.J., Barnum, S.R., 2000. HSP16.6 is involved in the development of thermotolerance and thylakoid stability in the unicellular cyanobacterium, Synechocystis sp. PCC 6803. Cur. Microbiol. 40, 283-287.
22.Liu, X.G., Zhao, J.J., Wu, Q.Y., 2005. Oxidative stress and metal ions effects on the cores of phycobilisomes in Synechocystis sp. PCC 6803. FEBS Lett. 579, 4571-4576.
23.Lu, X., 2010. A perspective: photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. Biotechnol. Adv. 28, 742-746.
24.Mata, T.M., Martins, A.A., Caetano, N.S., 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sust. Energ. Rev. 14, 217-232.
25.Moxley, G., Zhang, Y.H.P., 2007. More accurate determination of acid-labile carbohydrates in lignocellulose by modified quantitative saccharification. Energy Fuels. 21, 3684-3688
26.Nakamoto, H., Suzuki, N., Roy, S.K., 2000. Constitutive expression of a small heat-shock protein confers cellular thermotolerance and thermal protection to the photosynthetic apparatus in cyanobacteria. FEBS Lett. 483, 169-174.
27.Nakamoto, H., Vígh, L., 2007. The small heat-shock proteins and their clients. Cell. Mol. Life Sci. 64, 294-306.
28.Nguyen, C.M., Kim, J.S., Son,g J.K., Choi, G.J., Choi, Y.H., Jang, K.S., Kim, J.C., 2012. D-lactic acid production from dry biomass of Hydrodictyon reticulatum by simultaneous saccharification and co-fermentation using Lactobacillus coryniformis subsp. torquens. Biotechnol. Lett. 12, 2235-2240.
29.Nitta, K., Suzuki, N., Honma, D., Kaneko, Y., Nakamoto, H., 2005. Ultrastructural stability under high temperature or intensive light stress conferred by a small heat shock protein in cyanobacteria. FEBS Lett. 579, 1235-1242.
30.Ono, E., Cuello, J.L., 2004. Design parameters of solar concentrating systems for CO2- mitigating algal photobioreactors. Energy. 29, 1651-1657.
31.Parmar, A., Singh, N.K., Pandey, A., Gnansounou, E., Madamwar, D., 2011. Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour. Technol. 102, 10163-10172.
32.Quintana, N., Van der Kooy, F., Van de Rhee, M.D., Voshol, G.P., Verpoorte, R., 2011. Renewable energy from cyanobacteria: energy production optimization by metabolic pathway engineering. Appl. Microbiol. Biotechnol. 91, 471-490.
33.Rippka, R., Deruelles, J., Waterbury, J.B., 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1-61.
34.Savakis, P., Hellingwerf, K.J., 2015. Engineering cyanobacteria for direct biofuel production from CO2. Curr. Opin. Biotechnol. 33, 8-14.
35.Schneider, S.H., 1989. Global warming: are we entering the greenhouse century? San Francisco, California, Sierra Club Books. xiv, 317.
36.Su, H.Y., Lee, T.M., Huang, Y.L., Chou, S.H., Wang, J.B., Lin, L.F., Chow, T.J., 2011. Increased cellulose production by heterologous expression of cellulose synthase genes in a filamentous heterocystous cyanobacterium with a modification in photosynthesis performance and growth ability. Bot. Stud. 52, 265-275.
37.Waditee, R., Hibino, T., Nakamura, T., Incharoensakdi, A., Takabe, T., 2002. Overexpression of a Na+/H+ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water. Proc. Natl. Acad. Sci. U. S. A. 99, 4109-4114.
38.Yang, J., Xu, M., Zhang, X., Hu, Q., Sommerfeld, M., Chen, Y., 2011. Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour. Technol. 102, 159-165.
39.Zhu, B., Chen, T.H., and Li, P.H., 1995. Activation of two osmotin-like protein genes by abiotic stimuli and fungal pathogen in transgenic potato plants. Plant Physiol. 108, 929-937.

Chapter 4
1.Aikawa, S., Izumi, Y., Matsuda, F., Hasunuma, T., Chang, J.S., Kondo, A., 2012. Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply. Bioresour. Technol. 108, 211-215.
2.Andersson, C.R., Tsinoremas, N.F., Shelton, J., Lebedeva, N.V., Yarrow, J., Min, H., Golden, S.S., 2000. Application of bioluminescence to the study of circadian rhythms in cyanobacteria. Methods Enzymol. 305, 527-542.
3.Badger, M.R., Price, G.D., 2003. CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J. Exp. Botany 54, 609-622.
4.Balat, M., Balat, H., 2009. Recent trends in global production and utilization of bioethanol fuel. Appl. Energy. 86, 2273-2282.
5.Bonfil, D.J., Ronen-Tarazi, M., Sultemeyer, D., Lieman-Hurwitz, J., Schatz, D., Kaplan, A., 1998. A putative HCO3- transporter in the cyanobacterium Synechococcus sp. strain PCC7942. FEBS Lett. 430, 236-240.
6.Cheng, C.L., Chang, J.S., 2011. Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp. CL3 for fermentative hydrogen production. Bioresour. Technol. 102, 8628-8634.
7.Dragone, G., Fernandes, B.D., Abreu, A.P., Vicente, A.A., Teixeira, J.A., 2011. Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl. Energy 88, 3331-3335.
8.Golden, S. S., Brusslan, J., Haselkorn, R., 1987. Genetic engineering of the cyanobacterial chromosome. Methods Enzymol. 153, 215-231.
9.Hewett-Emmett, D. and Tashian, R. E., 1996. Functional diversity, conservation, and convergence in the evolution of α-, β-, and γ-carbonic anhydrase gene families. Mol. Phylogenet. Evol. 5, 50-77.
10.Jones, H.G., 1992. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology, 2nd edition., Cambridge University Press, ISBN 9780521425247, Cambridge, UK.
11.Kappe, G., Leunissen, J.A., de Jong, W.W., 2002. Evolution and diversity of prokaryotic small heat shock proteins. Prog. Mol. Subcell. Biol. 28, 1-17.
12.Kawano, S., Tajima, K., Uemori, Y., Yamashita, H., Erata, T., Munekata, M., and Takai, M., 2002. Cloning of cellulose synthesis related genes from Acetobacter xylinum ATCC23769 and ATCC53582: Comparison of cellulose synthetic ability between strains. DNA Res. 9, 149-156.
13.Kumar, S.A., Kumari, P.H., Kumar, G.S., Mohanalatha, C., Kavi Kishor, P.B., 2015. Osmotin: a plant sentinel and a possible agonist of mammalian adinopectin. Front. Plant. Sci. 6, 163.
14.Lehmann, M., Wöber, G., 1976. Accumulation, mobilization and turn-over of glycogen in the blue-green bacterium Anacystis nidulans. Arch. Microbiol. 111, 93-97.
15.Lieman-Hurwitz J., Rachmilevitch S., Mittler R., Marcusb Y. and Kaplan A., 2003. Enhanced photosynthesis and growth of transgenic plants that express ictB, a gene involved in HCO3–accumulation in cyanobacteria. Plant Biotechnol J. 1, 43-50.
16.Lynd, L.R., 1996. Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu. Rev. Energy Env. 21, 403-465.
17.Miller, J.H., 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
18.Moxley, G., Zhang, Y. H. P., 2007. More accurate determination of acid-labile carbohydrates in lignocellulose by modifiedquantitative saccharification. Energy Fuels. 21, 3684-3688.
19.Nakamoto, H., Suzuki, N., Roy, S.K., 2000. Constitutive expression of a small heat-shock protein confers cellular thermotolerance and thermal protection to the photosynthetic apparatus in cyanobacteria. FEBS Lett. 483, 169-174.
20.Nakamoto, H., Vígh, L., 2007. The small heat-shock proteins and their clients. Cell. Mol. Life Sci. 64, 294-306.
21.Nobles, D.R., Brown Jr., R.M., 2008. Transgenic expression of Gluconacetobacter xylinus strain ATCC 53582 cellulose synthase genes in the cyanobacterium Synechococcus leopoliensis strain UTCC 100. Cellulose. 15, 691-701.
22.Pimentel, D., Patzek, T.W., 2008. Ethanol Production: Energy and Economic Issues Related to U.S and Brazilian Sugarcane. Biofuels, Solar and Wind as Renewable Energy Systems, Springer, Netherlands, pp. 357-371.
23.Ross, P., Weinhouse, H., Aloni, Y., Michaeli, D., Weinberger-Ohana, P., Mayer, R., Braun, S., de Vroom, E., van der Marel, G.A., van Boom, J.H., Benziman, M., 1987. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature. 325, 279-281.
24.Sánchez, O.J., Cardona, C.A., 2008. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99, 5270-5295.
25.Saxena, I. M., Brown, R. M., Jr., Fevre, M., Geremia, R. A., Henrissat, B., 1995. Multidomain architecture of beta-glycosyl transferases: implications for mechanism of action. J. Bacteriol. 177, 1419-424.
26.Saxena, I.M., Kudlicka, K., Okada, K., Brown, R. M., Jr.. 1994. Charsequence of A. xylinum that is the core region of the acterization of genes on the cellulose-synthesizing operon (acsoperon) of Acetobacter xylinum: implications for cellulose crystallization. J. Bacteriol. 176, 5735-5752.
27.Shibata, M., Katoh, H., Sonoda, M., Ohkawa, H., Shimoyama, M., Fukuzawa, H., Kaplan, A., Ogawa, T., 2002. Genes essential to sodium-dependent bicarbonate transport in cyanobacteria: function and phylogenetic analysis. J. Biol. Chem. 277, 18658-18664.
28.Soltes-Rak, E., Mulligan, M.E., Coleman, J.R., 1997. Identification and characterization of a gene encoding a vertebrate-type carbonic anhydrase in cyanobacteria. J. Bacteriol. 179, 769-774.
29.Su, H.Y., Lee, T.M., Huang, Y.L., Chou, S.H., Wang, J. B., Lin, L. F., Chow, T. J., 2011. Increased cellulose production by heterologous expression of cellulose synthase genes in a filamentous heterocystous cyanobacterium with a modification in photosynthesis performance and growth ability. Bot Stud. 52, 265-275.
30.Sun, Y. and J. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1-11.
電子全文 電子全文(網際網路公開日期:20220829)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔