|
Chapter 1 1.Andersson, C.R., Tsinoremas, N.F., Shelton, J., Lebedeva, N.V., Yarrow, J., Min, H., Golden, S.S., 2000. Application of bioluminescence to the study of circadian rhythms in cyanobacteria. Methods Enzymol. 305, 527-542. 2.Atsumi, S., Higashide, W., Liao, J.C., 2009. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat. Biotechnol. 27, 1177-1180. 3.Borowitzka, M.A., 1999. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J. Biotechnol. 70, 313-21. 4.Chang, E.H., Yang, S.S., 2003. Some characteristics of microalgae isolated in Taiwan for biofixation of carbon dioxide. Bot. Bul. Acad. Sin. 44, 43-52. 5.Chen, P.H., Liu, H.L, Chen, Y.J., Cheng, Y.H., Lin, W.L., Yeh, C.H., Chang, C.H., 2012. Enhancing CO2 bio-mitigation by genetic engineering of cyanobacteria, Energy Environ. Sci. 5, 8318-8327. 6.Chisti Y., 2007. Biodiesel from microalgae. Biotechnol. Adv. 25, 294-306. 7.Chiu, S.Y., Kao, C.Y., Chen, C.H., Kuan, T.C., Ong, S.C., Lin, C.S., 2008. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour. Technol. 99, 3389-3396. 8.D’Alessandro, D.M., Smit, B., Long, J.R., 2010. Carbon dioxide capture: prospects for new materials, Angew. Chem. Int. Ed. 49, 6058-6082. 9.Deng, M., Coleman, J.R., 1999. Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol. 65, 523-528. 10.Ducat, D.C., Avelar-Rivas, J.A., Way, J.C., Silver, P.A., 2012. Rerouting carbon flux to enhance photosynthetic productivity. Appl. Environ. Microbiol. 78, 2660-2668. 11.Energy Information Administration. International Energy Outlook., 2009. US Department of Energy, Washington, DC, http://www.eia.doe.gov/oiaf/ieo/pdf/0484(2009).pdf. 12.Golden, S.S., Brusslan, J., Haselkorn, R., 1987. Genetic engineering of the cyanobacterial chromosome. Methods Enzymol. 153, 215-231. 13.Gutierrez, R., Gutierrez-Sanchez, R., Nafidi, A., 2008. Trend analysis using nonhomogeneous stochastic diffusion processes. Emission of CO2; Kyoto protocol in Spain. Stoch. Environ. Res. Risk Assess. 22, 57-66. 14.Ho, S.H, Chen, C.Y., Chang, J.S., 2012. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 113, 244-252. 15.Hsueh, H.T., Li, W.J., Chen, H.H., Chu, H., 2009. Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. CL-1 and Nannochloropsis oculta. J. Photochem. Photobiol. B, Biol. 95, 33-39. 16.Huntley, M., Redalje, D., 2007. CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig. Adapt. Strategies Glob. Change 12, 573-608. 17.Intergovernmental Panel on Climate Change–IPCC., 2007. Climate Change 2007: Synthesis Report, United Nations. 18.Kay, R.A., 1991. Microalgae as food and supplement. Crit. Rev. Food Sci. Nutr. 30, 555–573. 19.Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., Malcata, F., Langenhove, H., 2010. Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol. 28, 371–380. 20.Lackne, K.S., 2003. Climate Change: A guide to CO2 sequestration. Science, 300, 1677-1678. 21.Lan, E.I., Liao, J.C., 2011. Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab. Eng. 13, 353-363. 22.Li, Y., Horsman, M., Wu, N., Lan, C.Q., Dubois-Calero, N., 2008a. Biofuels from microalgae. Biotechnol. Prog. 24, 815–820. 23.Li, Y., Horsman, M., Wang, B., Wu, N., Lan, C.Q., 2008b. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 81, 629–636. 24.Lu, X.f., 2010. A perspective: Photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. Biotechnol. Adv. 28, 742-746. 25.Murakami, M., Ikenouchi, M., 1997. The biological CO2 fixation and utilization project by RITE (2): Screening and breeding of microalgae with high capability in fixing CO2. Energy Convers. Manage. 38, 493-497 26.Niederholtmeyer, H., Wolfstadter, B.T., Savage, D.F., Silver, P. A. and Way, J.C., 2010. Engineering cyanobacteria to synthesize and export hydrophilic products. Appl. Environ. Microbiol. 76, 3462-3466. 27.Ramanathan, V., 1988. The greenhouse theory of climate change: a test by an inadvertent global experiment. Science. 240, 293-299. 28.Ruffing, A.M., 2011. Engineered cyanobacteria: teaching an old bug new tricks. Bioeng. Bugs. 2, 136-149. 29.Vioque, A., 2007. Transformation of cyanobacteria. Adv. Exp. Med. Biol. 616, 12-22. 30.Watson, R.T., and Core Writing Team., 2001. Climate change: Synthesis report. IPCC, Cambridge University Press. 31.Zeng, X.-H., Danquah, M.K., Chen, X.D., Lu, Y.-H., 2011. Microalgae bioengineering: from CO2 fixation to biofuel production. Renew. Sustain. Energy Rev. 15, 3252-3260. 32.Zheng, Y., Chen, Z.A., Lu, H.B., Zhang, W., 2011. Optimization of carbon dioxide fixation and starch accumulation by Tetraselmis subcordiformis in a rectangular airlift photobioreactor. African J. Biotechnol. 10, 1888-1901.
Chapter 2 1.Andersson, C.R., Tsinoremas, N.F., Shelton, J., Lebedeva, N.V., Yarrow, J., Min, H., and Golden, S.S., 2000. Application of bioluminescence to the study of circadian rhythms in cyanobacteria. Methods Enzymol. 305, 527-542. 2.Arnon, D.I., 1949. Copper enzyme in isolated chloroplasts. Polyphenoloxydase in Beta vulgaris. Plant Physiol. 24, 1-15. 3.Badger, M.R., Andrews, T.J., Whitney, S.M., Ludwig, M., Yellowlees, D.C., Leggat, W., Price, G.D., 1998. The diversity and coevolution of rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can. J. Bot. 76, 1052–1071. 4.Badger, M.R. Hanson, D., Price, G.D., 2002. Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Funct. Plant Biol. 29, 161-173. 5.Badger, M. R. and Price, G. D., 1994. The role of carbonic anhydrase in photosynthesis. Annu. Rev. Plant Physiol. 45, 369-392. 6.Badger, M.R., Price, G.D., 2003. CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J. Exp. Bot. 54, 609-622. 7.Bonfil, D.J., Ronen-Tarazi, M., Sultemeyer, D., Lieman-Hurwitz, J., Schatz, D. and Kaplan, A., 1998. A putative HCO3- transporter in the cyanobacterium Synechococcus sp. strain PCC 7942. FEBS Lett. 430, 236-240. 8.Bradford, M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. 9.Chen, P.H., Liu, H.L, Chen, Y.J., Cheng, Y.H., Lin, W.L., Yeh, C.H., Chang, C.H., 2012. Enhancing CO2 bio-mitigation by genetic engineering of cyanobacteria, Energy Environ. Sci. 5, 8318-8327. 10.Coleman, J. R., 1991. The molecular and biochemical analyses of CO2 concentrating mechanisms in cyanobacteria and green algae. Plant Cell Environ. 14, 861-867. 11.Fukuzawa, H., Suzuki, E., Komukai, Y. and Miyachi, S., 1992. A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon dioxide fixation by Synechococcus PCC7942. Proc. Natl. Acad. Sci. U. S. A. 89, 4437-4441. 12.Giordano, M., Beardall, J., Raven, J.A., 2005. CO2 concentrating mechanisms in algae mechanisms: environmental modulation, and evolution. Annu. Rev. Plant Biol. 56, 99-131. 13.Golden, S.S., Brusslan, J., Haselkorn, R., 1987. Genetic engineering of the cyanobacterial chromosome. Methods Enzymol. 153, 215-231. 14.Hakimi, M.A., Privat, I., Valay, J.G., Lerbs-Mache, S., 2000. Evolutionary conservation of C-terminal domains of primary sigma(70)-type transcription factors between plants and bacteria. J. Biol. Chem. 275, 9215-9221 15.Hewett-Emmett, D. and Tashian, R. E., 1996. Functional diversity, conservation, and convergence in the evolution of α-, β-, and γ-carbonic anhydrase gene families. Mol. Phylogenet. Evol. 5, 50-77. 16.Ho, S.H, Chen, C.Y., Chang, J.S., 2012. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 113, 244-252. 17.Ho, S.H., Chen, C.Y., Lee, D.J., Chang, J.S., 2011. Perspectives on microalgae CO2-emission mitigation systems - A review. Biotechnol. Adv. 29, 189-198. 18.Intergovernmental Panel on Climate Change–IPCC., 2007. Climate Change 2007: Synthesis Report, United Nations. 19.Jones, H.G., 1992. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology, 2nd edition., Cambridge University Press, ISBN 9780521425247, Cambridge, UK. 20.Kaplan, A., Reinhold, L., 1999. CO2 concentrating mechanisms in photosynthetic microorganisms. Annu Rev Plant Physiol Plant Mol Biol. 50, 539-570. 21.Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680-685. 22.Lieman-Hurwitz J., Rachmilevitch S., Mittler R., Marcusb Y. and Kaplan A., 2003. Enhanced photosynthesis and growth of transgenic plants that express ictB, a gene involved in HCO3–accumulation in cyanobacteria. Plant Biotechnol J. 1, 43-50. 23.Miller, J.H., 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. 24.Price, G.D., 2011. Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism. Photosynth. Res. 109, 47-57. 25.Price, G.D., Badger, M.R., Woodger, F.J., Long, B.M., 2008. Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot. 59, 1441-1461. 26.Price, G.D., Woodger, F.J., Badger, M.R., Howitt, S.M., Tucker, L., 2004. Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc. Natl. Acad. Sci. U. S. A. 101, 18228-18233. 27.Rippka, R., J. Deruelles, J. Waterbury, M. Herdman and R. Stanier., 1979. Genericassignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1-61. 28.Shibata, M., Katoh, H., Sonoda, M., Ohkawa, H., Shimoyama, M., Fukuzawa, H., Kaplan, A., Ogawa, T., 2002. Genes essential to sodium-dependent bicarbonate transport in cyanobacteria: function and phylogenetic analysis. J. Biol. Chem. 277, 18658-18664. 29.So, A.K.C., Espie, G. S., 1998. Cloning, characterization and expression of carbonic anhydrase from the cyanobacterium Synechocystis PCC6803. Plant Mol. Biol. 37, 205-215. 30.So, A.K.C., Espie, G. S., 2005. Cyanobacterial carbonic anhydrases. Can. J. Bot. 83, 721-734. 31.Soltes-Rak, E., Mulligan, M.E., Coleman, J.R., 1997. Identification and characterization of a gene encoding a vertebrate-type carbonic anhydrase in cyanobacteria. J. Bacteriol. 179, 769-774. 32.Su, H.Y., Lee, T.M., Huang, Y.L., Chou, S.H., Wang, J. B., Lin, L. F., Chow, T. J., 2011. Increased cellulose production by heterologous expression of cellulose synthase genes in a filamentous heterocystous cyanobacterium with a modification in photosynthesis performance and growth ability. Bot Stud. 52, 265-275. 33.Tashian, R.E., 1989. The carbonic anhydrases: widening perspectives on their evolution, expression and function. Bioessays. 10, 186-92. 34.Towbin, H., Staehelin, T., Gordon, J., 1979. Electrophoretic Transfer of Proteins from Polyacrylamide Gels to Nitrocellulose Sheets: Procedure and Some Applications. Proc. Natl. Acad. Sci. U. S. A. 76, 4350-4354. 35.Yu, J.W., Price, G.D., Song, L., Badger, M.R., 1992. Isolation of a putative carboxysomal carbonic anhydrase gene from the cyanobacterium Synechococcus PCC7942. Plant Physiol. 100, 794-800.
Chapter 3 1.Angermayr, S. A., Rovira, A. G., Hellingwerf, K. J., 2015. Metabolic engineering of cyanobacteria for the synthesis of commodity products. Trends Biotechnol. 33, 352-361. 2.Arnon, D.I. 1949. Copper enzyme in isolated chloroplasts. Polyphenoloxydase in Beta vulgaris. Plant Physiol. 24, 1-15. 3.Bartley, M.L., Boeing, W.J., Corcoran, A.A., Holguin, F.O., Schaub, T., 2013. Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms. Biomass Bioenergy. 54, 83-88. 4.Basha, E., Lee, G. J., Breci, L. A., Hausrath, A. C., Buan, N. R., Giese, K. C., Vierling, E., 2004. The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions. J. Biol. Chem. 279, 7566-7575. 5.Chen, C.Y., Yeh, K.L., Aisyah, R., Lee, D.J., Chang, J.S., 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour. Technol. 102, 71-81. 6.Chiu, P.H., Soong, K., Chen, C.N., 2016. Cultivation of two thermotolerant microalgae under tropical conditions: Influences of carbon sources and light duration on biomass and lutein productivity in four seasons. Bioresour. Technol. 212, 190-198. 7.Chow, T.J., Su, H.Y., Tsai, T.Y., Chou, H.H., Lee, T.M., Chang, J.S., 2014. Using recombinant cyanobacterium (Synechococcus elongatus) with increased carbohydrate productivity as feedstock for bioethanol production via separate hydrolysis and fermentation process. Bioresour. Technol. 184, 33-41. 8.Cuaresma, M., Janssen, M., Vilchez, C., Wijffels, R.H., 2011. Horizontal or vertical photobioreactors? How to improve microalgae photosynthetic efficiency. Bioresour. Technol. 102, 5129-5137. 9.Farooq, W., Suh, W.I., Park, M.S., Yang, J.W., 2015. Water use and its recycling in microalgae cultivation for biofuel application. Bioresour. Technol. 184, 73-81. 10.Franz, A., Lehr, F., Posten, C., Schaub, G., 2012. Modeling microalgae cultivation productivities in different geographic locations – estimation method for idealized photobioreactors. Biotechnol. J. 4, 546-557. 11.Garzon-Sanabria, A.J., Davis, R.T., Nikolov, Z.L., 2012. Harvesting Nannochloris oculata by inorganic electrolyte flocculation: effect of initial cell density, ionic strength, coagulant dosage, and media pH. Bioresour. Technol. 118, 418-424 12.Golden, S.S., Brusslan, J., Haselkorn, R., 1987. Genetic engineering of the cyanobacterial chromosome. Methods Enzymol. 153, 215-231. 13.Guieysse, B., Béchet, Q., Shilton, A., 2013. Variability and uncertainty in water demand and water footprint assessments of fresh algae cultivation based on case studies from five climatic regions. Bioresour. Technol. 128, 317-323. 14.Hannon, M., Gimpel, J., Tran, M., Rasala, B., Mayfield, S., 2010. Biofuels from algae: challenges and potential. Biofuels. 1, 763-784. 15.Heidorn, T., Camsund, D., Huang, H.H., Lindberg, P., Oliveira, P., Stensjo, K., Lindblad, P., 2011. Synthetic biology in cyanobacteria: engineering and analyzing novel functions. Methods in Enzymology. 497, 539-579. 16.Ho, S.H., Lu, W.B., Chang, J.S., 2012. Photobioreactor strategies for improving the CO2 fixation efficiency of indigenous Scenedesmus obliquus CNW-N: statistical optimization of CO2 feeding, illumination, and operation mode. Bioresour. Technol. 105, 106-113. 17.Kappe, G., Leunissen, J.A., de Jong, W.W., 2002. Evolution and diversity of prokaryotic small heat shock proteins. Prog. Mol. Subcell. Biol. 28, 1-17. 18.Kumar, K., Dasgupta, C.N., Nayak, B., Lindblad, P., Das, D., 2011. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour. Technol. 102, 4945-4953. 19.Kumar, S.A., Kumari, P.H., Kumar, G.S., Mohanalatha, C., Kavi Kishor, P.B., 2015. Osmotin: a plant sentinel and a possible agonist of mammalian adinopectin. Front. Plant. Sci. 6, 163. 20.Lee, J., Sim, S.J., Bott, M., Um, Y., Oh, M.K., Woo, H.M., 2014. Succinate production from CO₂-grown microalgal biomass as carbon source using engineered Corynebacterium glutamicum through consolidated bioprocessing. Sci. Rep. 4, 5819. 21.Lee, S., Owen, H.A., Prochaska, D.J., Barnum, S.R., 2000. HSP16.6 is involved in the development of thermotolerance and thylakoid stability in the unicellular cyanobacterium, Synechocystis sp. PCC 6803. Cur. Microbiol. 40, 283-287. 22.Liu, X.G., Zhao, J.J., Wu, Q.Y., 2005. Oxidative stress and metal ions effects on the cores of phycobilisomes in Synechocystis sp. PCC 6803. FEBS Lett. 579, 4571-4576. 23.Lu, X., 2010. A perspective: photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. Biotechnol. Adv. 28, 742-746. 24.Mata, T.M., Martins, A.A., Caetano, N.S., 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sust. Energ. Rev. 14, 217-232. 25.Moxley, G., Zhang, Y.H.P., 2007. More accurate determination of acid-labile carbohydrates in lignocellulose by modified quantitative saccharification. Energy Fuels. 21, 3684-3688 26.Nakamoto, H., Suzuki, N., Roy, S.K., 2000. Constitutive expression of a small heat-shock protein confers cellular thermotolerance and thermal protection to the photosynthetic apparatus in cyanobacteria. FEBS Lett. 483, 169-174. 27.Nakamoto, H., Vígh, L., 2007. The small heat-shock proteins and their clients. Cell. Mol. Life Sci. 64, 294-306. 28.Nguyen, C.M., Kim, J.S., Son,g J.K., Choi, G.J., Choi, Y.H., Jang, K.S., Kim, J.C., 2012. D-lactic acid production from dry biomass of Hydrodictyon reticulatum by simultaneous saccharification and co-fermentation using Lactobacillus coryniformis subsp. torquens. Biotechnol. Lett. 12, 2235-2240. 29.Nitta, K., Suzuki, N., Honma, D., Kaneko, Y., Nakamoto, H., 2005. Ultrastructural stability under high temperature or intensive light stress conferred by a small heat shock protein in cyanobacteria. FEBS Lett. 579, 1235-1242. 30.Ono, E., Cuello, J.L., 2004. Design parameters of solar concentrating systems for CO2- mitigating algal photobioreactors. Energy. 29, 1651-1657. 31.Parmar, A., Singh, N.K., Pandey, A., Gnansounou, E., Madamwar, D., 2011. Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour. Technol. 102, 10163-10172. 32.Quintana, N., Van der Kooy, F., Van de Rhee, M.D., Voshol, G.P., Verpoorte, R., 2011. Renewable energy from cyanobacteria: energy production optimization by metabolic pathway engineering. Appl. Microbiol. Biotechnol. 91, 471-490. 33.Rippka, R., Deruelles, J., Waterbury, J.B., 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1-61. 34.Savakis, P., Hellingwerf, K.J., 2015. Engineering cyanobacteria for direct biofuel production from CO2. Curr. Opin. Biotechnol. 33, 8-14. 35.Schneider, S.H., 1989. Global warming: are we entering the greenhouse century? San Francisco, California, Sierra Club Books. xiv, 317. 36.Su, H.Y., Lee, T.M., Huang, Y.L., Chou, S.H., Wang, J.B., Lin, L.F., Chow, T.J., 2011. Increased cellulose production by heterologous expression of cellulose synthase genes in a filamentous heterocystous cyanobacterium with a modification in photosynthesis performance and growth ability. Bot. Stud. 52, 265-275. 37.Waditee, R., Hibino, T., Nakamura, T., Incharoensakdi, A., Takabe, T., 2002. Overexpression of a Na+/H+ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water. Proc. Natl. Acad. Sci. U. S. A. 99, 4109-4114. 38.Yang, J., Xu, M., Zhang, X., Hu, Q., Sommerfeld, M., Chen, Y., 2011. Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour. Technol. 102, 159-165. 39.Zhu, B., Chen, T.H., and Li, P.H., 1995. Activation of two osmotin-like protein genes by abiotic stimuli and fungal pathogen in transgenic potato plants. Plant Physiol. 108, 929-937.
Chapter 4 1.Aikawa, S., Izumi, Y., Matsuda, F., Hasunuma, T., Chang, J.S., Kondo, A., 2012. Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply. Bioresour. Technol. 108, 211-215. 2.Andersson, C.R., Tsinoremas, N.F., Shelton, J., Lebedeva, N.V., Yarrow, J., Min, H., Golden, S.S., 2000. Application of bioluminescence to the study of circadian rhythms in cyanobacteria. Methods Enzymol. 305, 527-542. 3.Badger, M.R., Price, G.D., 2003. CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J. Exp. Botany 54, 609-622. 4.Balat, M., Balat, H., 2009. Recent trends in global production and utilization of bioethanol fuel. Appl. Energy. 86, 2273-2282. 5.Bonfil, D.J., Ronen-Tarazi, M., Sultemeyer, D., Lieman-Hurwitz, J., Schatz, D., Kaplan, A., 1998. A putative HCO3- transporter in the cyanobacterium Synechococcus sp. strain PCC7942. FEBS Lett. 430, 236-240. 6.Cheng, C.L., Chang, J.S., 2011. Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp. CL3 for fermentative hydrogen production. Bioresour. Technol. 102, 8628-8634. 7.Dragone, G., Fernandes, B.D., Abreu, A.P., Vicente, A.A., Teixeira, J.A., 2011. Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl. Energy 88, 3331-3335. 8.Golden, S. S., Brusslan, J., Haselkorn, R., 1987. Genetic engineering of the cyanobacterial chromosome. Methods Enzymol. 153, 215-231. 9.Hewett-Emmett, D. and Tashian, R. E., 1996. Functional diversity, conservation, and convergence in the evolution of α-, β-, and γ-carbonic anhydrase gene families. Mol. Phylogenet. Evol. 5, 50-77. 10.Jones, H.G., 1992. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology, 2nd edition., Cambridge University Press, ISBN 9780521425247, Cambridge, UK. 11.Kappe, G., Leunissen, J.A., de Jong, W.W., 2002. Evolution and diversity of prokaryotic small heat shock proteins. Prog. Mol. Subcell. Biol. 28, 1-17. 12.Kawano, S., Tajima, K., Uemori, Y., Yamashita, H., Erata, T., Munekata, M., and Takai, M., 2002. Cloning of cellulose synthesis related genes from Acetobacter xylinum ATCC23769 and ATCC53582: Comparison of cellulose synthetic ability between strains. DNA Res. 9, 149-156. 13.Kumar, S.A., Kumari, P.H., Kumar, G.S., Mohanalatha, C., Kavi Kishor, P.B., 2015. Osmotin: a plant sentinel and a possible agonist of mammalian adinopectin. Front. Plant. Sci. 6, 163. 14.Lehmann, M., Wöber, G., 1976. Accumulation, mobilization and turn-over of glycogen in the blue-green bacterium Anacystis nidulans. Arch. Microbiol. 111, 93-97. 15.Lieman-Hurwitz J., Rachmilevitch S., Mittler R., Marcusb Y. and Kaplan A., 2003. Enhanced photosynthesis and growth of transgenic plants that express ictB, a gene involved in HCO3–accumulation in cyanobacteria. Plant Biotechnol J. 1, 43-50. 16.Lynd, L.R., 1996. Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu. Rev. Energy Env. 21, 403-465. 17.Miller, J.H., 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. 18.Moxley, G., Zhang, Y. H. P., 2007. More accurate determination of acid-labile carbohydrates in lignocellulose by modifiedquantitative saccharification. Energy Fuels. 21, 3684-3688. 19.Nakamoto, H., Suzuki, N., Roy, S.K., 2000. Constitutive expression of a small heat-shock protein confers cellular thermotolerance and thermal protection to the photosynthetic apparatus in cyanobacteria. FEBS Lett. 483, 169-174. 20.Nakamoto, H., Vígh, L., 2007. The small heat-shock proteins and their clients. Cell. Mol. Life Sci. 64, 294-306. 21.Nobles, D.R., Brown Jr., R.M., 2008. Transgenic expression of Gluconacetobacter xylinus strain ATCC 53582 cellulose synthase genes in the cyanobacterium Synechococcus leopoliensis strain UTCC 100. Cellulose. 15, 691-701. 22.Pimentel, D., Patzek, T.W., 2008. Ethanol Production: Energy and Economic Issues Related to U.S and Brazilian Sugarcane. Biofuels, Solar and Wind as Renewable Energy Systems, Springer, Netherlands, pp. 357-371. 23.Ross, P., Weinhouse, H., Aloni, Y., Michaeli, D., Weinberger-Ohana, P., Mayer, R., Braun, S., de Vroom, E., van der Marel, G.A., van Boom, J.H., Benziman, M., 1987. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature. 325, 279-281. 24.Sánchez, O.J., Cardona, C.A., 2008. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99, 5270-5295. 25.Saxena, I. M., Brown, R. M., Jr., Fevre, M., Geremia, R. A., Henrissat, B., 1995. Multidomain architecture of beta-glycosyl transferases: implications for mechanism of action. J. Bacteriol. 177, 1419-424. 26.Saxena, I.M., Kudlicka, K., Okada, K., Brown, R. M., Jr.. 1994. Charsequence of A. xylinum that is the core region of the acterization of genes on the cellulose-synthesizing operon (acsoperon) of Acetobacter xylinum: implications for cellulose crystallization. J. Bacteriol. 176, 5735-5752. 27.Shibata, M., Katoh, H., Sonoda, M., Ohkawa, H., Shimoyama, M., Fukuzawa, H., Kaplan, A., Ogawa, T., 2002. Genes essential to sodium-dependent bicarbonate transport in cyanobacteria: function and phylogenetic analysis. J. Biol. Chem. 277, 18658-18664. 28.Soltes-Rak, E., Mulligan, M.E., Coleman, J.R., 1997. Identification and characterization of a gene encoding a vertebrate-type carbonic anhydrase in cyanobacteria. J. Bacteriol. 179, 769-774. 29.Su, H.Y., Lee, T.M., Huang, Y.L., Chou, S.H., Wang, J. B., Lin, L. F., Chow, T. J., 2011. Increased cellulose production by heterologous expression of cellulose synthase genes in a filamentous heterocystous cyanobacterium with a modification in photosynthesis performance and growth ability. Bot Stud. 52, 265-275. 30.Sun, Y. and J. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1-11.
|