中文部分
李慶男 (2005),《時間序列講義》(高雄:國立中山大學),《國立中山大學經濟學研究所》,〈http://econ.nsysu.edu.tw/files/11-1124-1342.php〉。
李見發、洪振義、林益倍 (2012),〈國際原油價格上漲對台灣產業生產成本與物價水準的影響〉,《應用經濟論叢》,92,163-197。陳旭昇 (2013),《時間序列分析: 總體經濟與財務金融之應用》,(臺北:東華書局,二版)。
張呈徽、李仁耀、呂軒宇 (2012),〈國際油價對消費者物價指數之影響分析〉,《修平學報》,25,79-90。張萃貞、鄭雅綺 (2008),〈油價上漲對國內物價及人民生活負擔的影響簡析〉,《經濟研究》,8 卷,33-50。張筱嵐 (2009),《原物料指數與總經物價指數關聯性分析》,(臺北:國立政治大學金融研究所碩士論文)。
郭宗憲 (2008),《世界主要原物料價格指數與台灣消費者物價指數的關聯 性》,(臺北:國立交通大學經營管理研究所碩士班碩士論文)。郭柱延 (2011),《石油危機時期之物價問題與相關經濟政策分析》,(嘉義: 國立中正大學國際經濟學研究所碩士論文)。彭曄 (2015),《國際油價與消費者分類物價指數之關聯分析》,(桃園:國立 中央大學產業經濟研究所在職專班碩士論文)。楊奕農 (2009),《時間序列分析: 經濟與財務上之應用》,(臺北:雙葉書局, 二版)。
賴景昌 (2011),《總體經濟學》,(臺北:雙葉書局,三版)。
羅佑傑 (2016),《油價、利率與通貨膨脹》,(臺北:國立台北大學經濟研究所碩士論文)。英文部分
Akaike, H. (1974). ‘A new look at the statistical model identification’, Automatic Control, IEEE Transactions on, Vol. 19(6), pp. 716–723.
Armesto, M. T., Engemann, K. M. and Owyang, M. T. (2010). ‘Forecasting with Mixed Frequencies’, Federal Reserve Bank of St. Louis Review, Vol. 92(6), pp. 521-36.
Clements, M. and Galvão, A. B. (2008). ‘Macroeconomic forecasting with mixed- frequency data’, Journal of Business and Economic Statistics, Vol. 26, pp. 546–554.
Diebold, F. X. and Mariano, R. S. (1995). ‘Comparing predictive accuracy’, Journal of Business & Economic Statistics, Vol. 13, pp. 253-263.
Engle, R. F. and Granger, C. W. (1987). ‘Cointegration and error correction: representation, estimation, and testing’, Econometrica: journal of the Econometric Society, pp. 251–276.
Granger, C. W. and Newbold, P. (1974). ‘Spurious regressions in econometrics’, Journal of econometrics, Vol. 2(2), pp. 111–120.
Götz, T. B., Hecq, A. and Urbain, J. P. (2014). ‘Forecasting mixed frequency time series with ecm-midas models’, Journal of Forecasting, Vol. 33, pp. 198–213.
Ghysels, E., Santa-Clara, P. and Valkanov, R. (2004). The Midas touch: mixed data sampling regression models, Working Paper 2004s-20, CIRANO.
Ghysels, E., Sinko, A. and Valkanov, R. (2007). ‘Midas regressions: further results and new directions’, Econometric Reviews, Vol. 26(1), pp. 53–90.
Johansen, S. (1988). ‘Statistical analysis of cointegration vectors’, Journal of eco nomic dynamics and control, Vol. 12(2), pp. 231–254.
Johansen, S. (1995). ‘Likelihood-based inference in cointegrated vector autoregres sive models’, Oxford University Press on Demand.
Johansen, S. and Juselius, K. (1990). ‘Maximum likelihood estimation and inference on cointegration—with applications to the demand for money’, Oxford Bulletin of Economics and statistics, Vol. 52(2), pp. 169–210.
Miller, J. I. (2012). Mixed-frequency cointegrating regressions with parsimonious distributed lag structures, Working Paper 1211, Department of Economics, University of Missouri.
Phillips, P. C. and Ouliaris, S. (1990). ‘Asymptotic properties of residual based tests for cointegration’, Econometrica: Journal of the Econometric Society, pp. 165– 193.
Said, S. E. and Dickey, D. A. (1984). ‘Testing for unit roots in autoregressive moving average models of unknown order’, Biometrika, Vol. 71(3), pp. 599– 607.
Schwarz, G. (1978) ‘Estimating the dimension of a model’, The annals of statistics, Vol. 6(2), pp. 461–464.
Totonchi, J. (2011). ‘Macroeconomic Theories of Inflation’, International Confer ence on Economics and Finance Research, Vol. 4(2011)