跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/15 23:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖志峰
研究生(外文):Zhi-Feng Liao
論文名稱:高效率重複樣式探勘演算法
論文名稱(外文):An Efficient Algorithm for Mining Repeating Patterns
指導教授:洪宗貝洪宗貝引用關係
指導教授(外文):Tzung-Pei Hong
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:53
中文關鍵詞:快速重複樣式探勘重複樣式後綴樹重複樣式索引資料探勘
外文關鍵詞:suffix treerepeating patternfast mining of repeating patternsdata miningrepeating-pattern-index
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
重複樣式是由一群可辨別的重複元素所組成,在現實生活中,其實有很多的應用,如在音樂序列和醫學領域的序列裡,會含有價值的重複樣式。在許多應用中重複樣式會隱藏在序列裡被視為隱性的知識,因此過去幾十年中,如何有效地獲取有價值的重複樣式一直是一個熱門議題。近幾年來,雖然提出了一些相關的研究來處理這一類的問題,但其表現仍無法獲得需要處理大量數據用戶的滿意。針對這個問題,在本文中我們提出了一個高效率的演算法,名為快速重複樣式探勘,其利用我們所設計的快速樣式索引來展現重複樣式探勘的效能。由於快速樣式索引可以顯現出每個樣式的位置資訊,因此能夠有效提供快速重複樣式的探勘。而一個給定序列只需掃描該序列一次就可以發現重複樣式,並不需要重複的掃描。最後,實驗結果也證明我們演算法的執行性能比其他的演算法還要好。
A repeating pattern is composed of identifiable elements that repeat in a predictable manner. In our real life, there are lots of applications such as musical and medical sequences containing valuable repeating patterns. The repeating patterns hidden in sequences might be viewed as implicit knowledge for identification of objects. Hence, how to efficiently and effectively retrieve the valuable repeating patterns has been a hot issue in the last decades. Although a number of studies were proposed to deal with this issue, the performance cannot still earn users'' satisfactions if large data are processed. To aim at this issue, in this thesis, we propose an efficient algorithm named Fast Mining of Repeating Patterns (FMRP) that achieves high performance of mining repeating patterns by our designed Quick-Pattern-Index (QPI). This index can provide the proposed FMRP algorithm with an effective support because it contains the information of pattern positions. Without scanning a given sequence iteratively, the repeating patterns can be discovered by only one scan of the sequence. The experimental results reveal that our proposed algorithm performs better than the compared method in finding the repeating patterns.
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
Contents v
List of Figures vii
List of Tables viii
CHAPTER 1 Introduction 1
1.1 Background 1
1.2 Motivation 4
1.3 Contribution 5
1.4 Thesis Organization 5
CHAPTER 2 Related Work 7
2.1 RP-tree Approach 7
2.2 Using Suffix Tree to Search Non-Trivial Repeating Patterns 14
2.3 Applications of Repeating Patterns 17
CHAPTER 3 The Proposed Method 20
3.1 Overview 20
3.2 Illustrative Examples 24
CHAPTER 4 Empirical Study 29
4.1 Experimental Settings for Data Generations 29
4.2 Experimental Results on Different Data Settings 30
4.3 Experimental Comparisons between Suffix Tree and the Proposed Method 36
CHAPTER 5 Conclusion and Future Work 37
5.1 Conclusion 37
5.2 Future Work 38
References 39
[1]W. Aguilar, Y. Frauel, F. Escolano, M. E. Martinez-Perez, A. Espinosa-Romero, and M. A. Lozano, “A Robust Graph Transformation Matching for Non-Rigid Registration,” Image and Vision Computing, Vol. 27, Issue 7, pp. 897-910, 2009.
[2]S. Blackburn and D. DeRoure, “A Tool for Content-based Navigation of Music,” The Sixth ACM International Conference on Multimedia, pp. 361-368, 1998.
[3]V. Bakhmutova, V. D. Gusev, and T. N. Tikova, “The Search for Adaptations in Song Melodies,” Computer Music Journal, Vol. 21, No. 1, pp. 58-67, 1997.
[4]M. A. Bartsch, and G. H. Wakefield, “To Catch a Chorus: Using Chroma-Based Representation for Audio Thumb-nailing,” The 2001 IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics, pp. 15-19, 2001.
[5]C. Le Brese, J. J. Zou, and Brian Uy, “An Improved ASIFT Algorithm for Matching Repeating Patterns,” The 17th IEEE International Conference on Image Processing, pp. 2949-2952, 2010.
[6]K. R. Castleman, Digital Image Processing, Prentice-Hall, 1979.
[7]E. Chew, “Modeling Tonality: Applications to Music Cognition,” The Twenty-Third Annual Conference of the Cognitive Science, pp. 206-211, 2001.
[8]J. C. C. Chen, and A. L. P. Chen, “Query by Rhythm: An Approach for Song Retrieval in Music Databases,” The 8th IEEE International Workshop on Research Issues in Data Engineering, pp. 139-146, 1998.
[9]M. Cooper, and J. Foote, “Automatic Music Summarization via Similarity Analysis,” The 2002 IEEE International Conference on Music Information Retrieval, pp. 81-85, 2002.
[10]M. T. Chen, and J. Seiferas, “Efficient and Elegant Subword-Tree Construction,” Combinatorial Algorithms on Words, Springer, pp. 97-107, 1984.
[11]A. L. P. Chen, M. Chang, J. Chen, J. L. Hsu, C.H. Hsu, and S. Y. S. Hua, “Query by Music Segments: An Efficient Approach for Song Retrieval,” The 2000 IEEE International Conference on Multimedia and Expo, Vol. 2, pp. 873-876, 2000.
[12]S. Friedman, and I. Stamos, “Online Detection of Repeated Structures in Point Clouds of Urban Scenes for Compression and Registration,” International Journal of Computer Vision, Vol. 102, Issue 1-3, pp. 112-128, 2013.
[13]D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology, Press Syndicate of the University of Cambridge, 1997.
[14]L. V. Gool, G. Zeng, P. Wonka, and P. Muller, “Image-Based Procedural Modeling of Facades,” The ACM SIGGRAPH Conference on Computer Graphics, pp. 63-130, 2007.
[15]A. Ghias, J. Logan, D. Chamberlin, and B. C. Smith, “Query by Humming: Musical Information Retrieval in an Audio Database,” The Third ACM International Conference on Multimedia, pp. 231-236, 1995.
[16]B. J. Han, E. Hwang, and S. Rho, “An Efficient Voice Transcription Scheme for Music Retrieval,” The 2007 IEEE International Conference on Multimedia and Ubiquitous Engineering , pp. 28-26, 2007.
[17]J. L. Hsu, C. C. Liu, and L. P. Chen, “Discovering Non-Trivial Repeating Patterns in Music Data,” IEEE Transactions on Multimedia, Vol. 3, No. 3, pp. 311-325, 2001.
[18]C. L. Krumbansl, Cognitive Foundations of Musical Pitch, Press of Oxford University, 1990.
[19]D. G. Lowe, “Object Recognition from Local Scale-Invariant Features,” The Seventh IEEE International Conference on Computer Vision, Vol. 2, pp. 1150-1157, 1999.
[20]J. Liu, E. Psarakis, and I. Stamos, “Automatic Kronecker Product Model Based Detection of Repeated Patterns in 2D Urban Images,” The 2013 IEEE International Conference on Computer Vision, pp. 401-408, 2013.
[21]C. C. Liu, J. L. Hsu, and L. P. A. Chen “Efficient Theme and Non-Trivial Repeating Pattern Discovering in Music Databases,” The 15th IEEE International Conference on Data Engineering, pp. 14-21, 1999.
[22]Y. L. Lo, and W. L. Li “Linear Time for Discovering Non-trivial Repeating Patterns in Music Databases,” The 2004 IEEE International Conference on Multimedia and Expo, Vol. 1, pp. 293-296, 2004.
[23]E. McCreight, “A Space-Economical Suffix Tree Construction Algorithm,” Journal of the ACM, Vol. 23, No. 2, pp. 262-271, 1976.
[24]Y. F. Ma, L. Lu, H. J. Zhang, and M .J. Li, “A User Attention Model for Video Summarization,” The Tenth ACM International Conference on Multimedia, pp. 533-542, 2002.
[25]J. M. Morel, and G. Yu, “ASIFT: A New Framework for Fully Affine Invariant Image Comparison,” SIAM Journal on Imaging Sciences, Vol. 2, Issue 2, pp. 438-469, 2009.
[26]M. A. Bartsch, and G. H. Wakefield, “Audio Thumb-Nailing of Popular Music Using Chroma-based representations,” IEEE Transactions on Multimedia, Vol. 7, Issue 1, pp. 96-104, 2005.
[27]S. Pfeiffer, S. Fischer, and W. Effelsberg, “Automatic Audio Content Analysis,” The Fourth ACM International Conference on Multimedia, pp. 21-30, 1996.
[28]Y. Rui, T. S. Huang, and S. Mehrotra, “Constructing Table-of-Content for Videos,” Multimedia Systems, Vol. 7, Issue 5, pp. 359-368, 1999.
[29]A. Singh, (2014). Ukkonen’s suffix tree construction. Retrieved from http://www.geeksforgeeks.org/ukkonens-suffix-tree-construction-part-6/.
[30]O. Teboul, I. Kokkinos, L. Simon, P. Koutsourakis, and N. Paragios, “Shape Grammar Parsing via Reinforcement Learning,” The 2015 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2273-2280, 2011.
[31]E. Ukkonen, “On-Line Construction of Suffix Tree,” Algorithmica, Vol. 14, Issue 3, pp. 249-260, 1995.
[32]P. Weiner, “Linear Pattern Matching Algorithms,” The 1973 IEEE Annual Symposium on Switching and Automata Theory, pp. 1-11, 1973.
[33]D. William, and E. Brown, Theoretical Foundations of Music, Wadsworth Publishing Company, 1978.
[34]Z. Wei, and J. Kosecka, “Generalized RANSAC Framework for Relaxed Correspondence Problems,” The Third IEEE International Symposium on 3D Data Processing, Visualization, and Transmission, pp. 14-16, 2006.
[35]M. Wang, L. Lu, and H. H. Zhang “Repeating Pattern Discovery from Acoustic Musical Signals,” The 2004 IEEE International Conference on Multimedia and Expo, Vol. 3, pp. 2019-2022, 2004.
[36]R. G. Xiao, Y. Y. Wang, H. Pan, and F. Wu, “Automatic Video Summarization by Spatio-Temporal Analysis and Non-Trivial Repeating Pattern Detection,” The 2008 IEEE Congress on Image and Signal Processing, pp. 555-559, 2008.
[37]P. Zhao, T. Fang, J. Xiao, H. Zhang, Q. Zhao, and L. Quan, “Rectilinear Parsing of Architecture in Urban Environment,” The 2010 IEEE Computer Vision and Pattern Recognition, pp. 342-349, 2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top