|
參考文獻 [1] F. de Dinechin and A. Tisserand, “Multipartite table methods,” IEEE Transactions on Computers, vol. 54, pp. 319–330, March 2005. [2] Y. J. Kim, H. E. Kim, S. H. Kim, J. S. Park, S. Paek, and L. S. Kim, “Homogeneous stream processors with embedded special function units for high-utilization programmable shaders,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, pp. 1691–1704, Sept 2012. [3] D. D. Caro, N. Petra, and A. G. M. Strollo, “Reducing lookup-table size in direct digital frequency synthesizers using optimized multipartite table method,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, pp. 2116–2127, Aug 2008. [4] B. G. Nam, H. Kim, and H. J. Yoo, “Power and area-efficient unified computation of vector and elementary functions for handheld 3d graphics systems,” IEEE Transactions on Computers, vol. 57, pp. 490–504, April 2008. [5] D. D. Caro, N. Petra, and A. G. M. Strollo, “High-performance special function unit for programmable 3-d graphics processors,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, pp. 1968–1978, Sept 2009. [6] D. D. Caro, N. Petra, and A. G. M. Strollo, “Direct digital frequency synthesizer using nonuniform piecewise-linear approximation,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, pp. 2409–2419, Oct 2011. [7] J. A. Pineiro, S. F. Oberman, J. M. Muller, and J. D. Bruguera, “High-speed function approximation using a minimax quadratic interpolator,” IEEE Transactions on Computers, vol. 54, pp. 304–318, March 2005. [8] D. U. Lee, R. Cheung, W. Luk, and J. Villasenor, “Hardware implementation tradeoffs of polynomial approximations and interpolations,” IEEE Transactions on Computers, vol. 57, pp. 686–701, May 2008. [9] D. U. Lee and J. D. Villasenor, “Optimized custom precision function evaluation for embedded processors,” IEEE Transactions on Computers, vol. 58, pp. 46–59, Jan 2009. [10] D. U. Lee, R. C. C. Cheung, W. Luk, and J. D. Villasenor, “Hierarchical segmentation for hardware function evaluation,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 17, pp. 103–116, Jan 2009. [11] T. Sasao, S. Nagayama, and J. T. Butler, “Numerical function generators using lut cascades,” IEEE Transactions on Computers, vol. 56, pp. 826–838, June 2007. [12] S. F. Hsiao, H. J. Ko, Y. L. Tseng, W. L. Huang, S. H. Lin, and C. S. Wen, “Design of hardware function evaluators using low-overhead nonuniform segmentation with address remapping,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, pp. 875–886, May 2013. [13] A. G. M. Strollo, D. D. Caro, and N. Petra, “Elementary functions hardware implementation using constrained piecewise-polynomial approximations,” IEEE Transactions on Computers, vol. 60, pp. 418–432, March 2011. [14] S. F. Hsiao, H. J. Ko, and C. S. Wen, “Two-level hardware function evaluation based on correction of normalized piecewise difference functions,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 59, pp. 292–296, May 2012. [15] M. Chaudhary and P. Lee, “An improved two-step binary logarithmic converter for fpgas,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, pp. 476–480, May 2015. [16] D. D. Sarma and D. W. Matula, “Faithful bipartite rom reciprocal tables,” in Computer Arithmetic, 1995., Proceedings of the 12th Symposium on, pp. 17–28, Jul 1995. [17] M. J. Schulte and J. E. Stine, “Approximating elementary functions with symmetric bipartite tables,” IEEE Transactions on Computers, vol. 48, pp. 842–847, Aug 1999. [18] J. E. Stine and M. J. Schulte, “The symmetric table addition method for accurate function approximation,” Journal of VLSI signal processing systems for signal, image and video technology, vol. 21, no. 2, pp. 167–177, 1999. [19] J.-M. Muller, “A few results on table-based methods,” Reliable Computing, vol. 5, no. 3, pp. 279–288, 1999. [20] P. K. Meher, “Lut optimization for memory-based computation,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, pp. 285–289, April 2010. [21] W. F. Wong and E. Goto, “Fast evaluation of the elementary functions in single precision,” IEEE Transactions on Computers, vol. 44, pp. 453–457, Mar 1995. [22] J. Y. L. Low and C. C. Jong, “A memory-efficient tables-and-additions method for accurate computation of elementary functions,” IEEE Transactions on Computers, vol. 62, pp. 858–872, May 2013. [23] D. Wang, J. M. Muller, N. Brisebarre, and M. D. Ercegovac, “(m,p,k) -friendly points: A table-based method to evaluate trigonometric function,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, pp. 711–715, Sept 2014. [24] S. F. Hsiao, P. H. Wu, C. S. Wen, and P. K. Meher, “Table size reduction methods for faithfully rounded lookup-table-based multiplierless function evaluation,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, pp. 466–470, May 2015. [25] J.-M. Muller, Elementary Functions: Algorithms and Implementation, 2nd ed. Birkhauser, 2006. [26] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann Pub, 2004. [27] B. Parhami, Algorithms and Design Methods for Digital Computer Arithmetic, International 2nd ed. Oxford University Press, 2012. [28] S.-F. Hsiao, P.-C. Wei, and C.-P. Lin, “An automatic hardware generator for special arithmetic functions using various rom-based approximation approaches,” in Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on, pp. 468– 471, May 2008. [29] 曾于玲, “使用位元截斷法之查表式函數求值單元自動產生器設計,” 國立中山 大學資訊工程學系碩士論文, 2011. [30] 吳柏翰, “無乘法器查表法函數運算設計之表格縮減和最佳化,” 國立中山大學 資訊工程學系碩士論文, 2013. [31] S. F. Hsiao, C. S. Wen, Y. H. Chen, and K. C. Huang, “Hierarchical multipartite function evaluation,” IEEE Transactions on Computers, vol. PP, no. 99, pp. 1–1, 2016.
|