(3.237.97.64) 您好!臺灣時間:2021/03/03 05:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳佳霖
研究生(外文):Jia-Lin Wu
論文名稱:以流體為基礎的微流體生物晶片控制層之最佳化實體設計
論文名稱(外文):Simultaneously Optimized Control Pins Placement and Channels Routing of Control-Layer in Flow-Based Microfluidic Biochips
指導教授:李淑敏李淑敏引用關係
指導教授(外文):Shu-Min Li
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:94
中文關鍵詞:連續流體生物晶片微流體實驗室晶片繞線
外文關鍵詞:biochiplab-on-a-chipcontinuous flowroutingmicrofluidic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來因微機電技術的進步,發展出了實驗室晶片(lab-on-a-chip, LoC)。實驗室晶片可應用於疾病檢測(point-of-care disease diagnostics, PoC)、藥物分析及新藥研發等多種應用。
微流體生物晶片(microfluidic biochip)是實驗室晶片的一種實現方式,微流體生物晶片(microfluidic biochip)大致可分為數位的(digital)及以流體為基礎(flow-based)的微流體生物晶片兩大類。數位的微流體生物晶片(digital microfluidic biochip)是透過將電極(electrode)通電來控制晶片上液珠(droplet)的移動;而以流體為基礎的微流體生物晶片(flow-based microfluidic biochip)是在晶片內設置數條微通道(microchannel),而實驗之反應物會在這些微通道(microchannel)中流動。本研究所提出之設計流程是針對以流體為基礎的微流體生物晶片此平台。
現今的微流體生物晶片(microfluidic biochips)因為缺乏電腦輔助設計工具(CAD tool),所以晶片的設計流程是透過人工的方式來完成,然而透過人工方式來設計,不僅需要大量的時間來進行設計,且當系統複雜度變高時,設計過程中出錯的機率可能也會提高。
此篇研究針對以流體為基礎的微流體生物晶片(flow-based microfluidic biochip)控制層(control layer)的設計,設計了系統化的控制針擺置(control pin placement)及控制通道繞線(control channel routing)流程,透過系統化的設計流程可讓設計者更有效率地找出設計方案,並減少人工設計過程中發生失誤的可能性,此篇研究主要考量偏移(skew)、符合率(matching rate)及控制針(control pin)數量等因素,透過系統化的設計流程找出最符合設計者需求的晶片設計方案。相較於先前研究,本研究之平均偏移(skew)值可減少18.5倍,在延遲(latency)部分平均減少約41%,而matching rate部分約增加49%。
Due to the advances in micro-electromechanical systems (MEMS), the lab-on-a-chip (LOC) has been developed. There are many applications of lab-on-a-chip devices, including point-of-care disease diagnostics, medicine analysis and drugs discovery.
The flow-based microfluidic biochip is one kind of lab-on-a-chips. On microfluidic biochip platform, digital microfluidic biochip and flow-based microfluidic biochip are the two major categories of implementation. On digital microfluidic biochip platform, the droplets are manipulated on an array of electrodes. However, there are many microchannels on flow-based microfluidic biochip and the reactants are manipulated in these closed microchannels. Our proposed microfluidic chip design flow is on the flow-based microfluidic biochip platform.
The design procedures of lab-on-a-chip today are by manual owing to lack of computer-aided design tools. Manual design procedures are time consuming and make the developments less efficient. There may be human errors as the designs become complex.
This research proposes a systematic design procedure for the control layer of flow-based microfluidic biochip. The designers would find the solutions more efficient and prevent human errors through the proposed design procedure. This research mainly considers the skew, matching rate and control pin numbers during the design process. Compared to previous works, our proposed method gets 18.5X improvement in skew, 41% improvement in latency and 49% improvement in matching rate.
第1章 簡介 1
1.1 背景 1
1.2 研究動機 3
1.3 主要貢獻 4
1.4 論文架構 5
第2章 問題定義及設計限制 6
2.1 晶片設計限制及策略 6
2.1.1 控制針數量 6
2.1.2 控制通道可繞性 6
2.1.3 控制通道訊號傳輸延遲 9
2.1.4 閥門非同步啟動 10
2.1.5 控制針擺置 12
2.2 問題描述及定義 15
第3章 演算法設計 16
3.1 建置相容群 (Clique-Driven Compatibility Group Construction) 17
3.2 決定繞線順序(Routing Order) 22
3.2.1 繞線順序問題 22
3.2.2 模擬退火演算法 (Simulated Annealing) 23
3.2.3 變形退火演算法 (Variance SA: bSA, aSA, fSA) 28
3.3 建置連接拓譜 (Connecting Topology Construction) 30
3.3.1 TRR (Tiled Rectangular Region) 31
3.3.2 Segment 32
3.3.3 SDFR (Shortest Distance Feasible Region) 34
3.3.4 EFR (Extended Feasible Region) 36
3.3.5 障礙偵測 39
3.3.6 建置連接拓譜 46
3.4 繞線及控制針擺置 48
3.5 時間複雜度分析 51
第4章 個案研究 53
4.1 測試資料與結果 53
4.2 個案分析 59
第5章 實驗結果 61
5.1 實驗環境 61
5.2 實驗數據 61
5.2.1 控制針數量 (#CP) 66
5.2.2 偏移 (Skew) 67
5.2.3 延遲 (Latency) 68
5.2.4 總群數 (#TClu) 69
5.2.5 Matching clusters (#Mat) 70
5.2.6 Matching rate (Mat%) 71
5.2.7 繞線長度 (WL) 72
5.2.8 執行時間 (Runtime) 73
5.2.9 各步驟執行時間分析 74
5.2.10 暴力法結果 (BruteForce) 76
第6章 結論 78
參考文獻 80
[1]Kai Hu, Trung Anh Dinh, Tsung-Yi Ho, and Krishnendu Chakrabarty, "Control-layer optimization for flow-based mVLSI microfluidic biochips," in Proc. Compilers, Architecture and Synthesis for Embedded Systems, 2014.

[2]Hailong Yao, Tsung-Yi Ho, and Yici Cai, "PACOR: Practical control-layer routing flow with length-matching constraint for flow-based microfluidic biochips," in Proc. Design Automation Conference, 2015.

[3]George M. Whitesides, "The origins and the future of microfluidics," Nature, vol. 442, pp. 368-373, 2006.

[4]Krishnendu Chakrabarty, "Design automation for microfluidics-based biochips," ACM Journal on Emerging Technologies in Computing Systems, vol. 1, pp. 186-223, 2005.

[5]Wajid Hassan Minhass, Paul Pop, Jan Madsen, and Felician Stefan Blaga, "Architectural synthesis of flow-based microfluidic large-scale integration biochips," in Proc. Compilers, Architectures and Synthesis for Embedded Systems, 2012.

[6]Jeffrey McDaniel, Auralila Baez, Brian Crites, Aditya Tammewar, and Philip Brisk, "Design and Verification Tools for Continuous Fluid Flow-based Microfluidic Devices," in Porc. Asia and South Pacific Design Automation Conference, 2013.


[7]Kai Hu, Tsung-Yi Ho, and Krishnendu Chakrabarty, "Testing of flow-based microfluidic biochips," in Proc. VLSI Test Symposium, 2013.

[8]Ahmed M. Amin, Mithuna Thottethodi, T. N. Vijaykumar, Steven Wereley, and Stephen C. Jacobson, "AquaCore: A Programmable Architecture for Microfluidics", in Proc. International Symposium on Computer Architecture, 2007.

[9]Raymond H. W. Lam, Kin Fong Lei, J.H.M. Lam, and W.J. Li, "Digitally Controllable Large-Scale Integrated Microfluidic Systems," in Proc. IEEE Robotics and Biomimetics, 2004.

[10]Krishnendu Chakrabarty and Tao Xu, "Digital Microfluidic Biochips: Design Automation and Optimization," ACM Journal on Emerging Technologies in Computing Systems, vol. 1, pp. 186–223, 2005.

[11]Ismail Emre Araci, Paul Pop, and Krishnendu Chakrabarty, "Microfluidic very large-scale integration for biochips: Technology, testing and fault-tolerant design," in Proc. European Test Symposium, 2015.

[12]S. Elizabeth Hulme, Sergey S. Shevkoplyas, and George M. Whitesides, “Incorporation of prefabricated screw, pneumatic, and solenoid valves into microfluidic devices,” Lab on a Chip, vol. 9, pp. 79-86, 2008.

[13]Wajid Hassan Minhass, Paul Pop, Jan Madsen, and Tsung-Yi Ho, "Control synthesis for the flow-based microfluidic large-scale integration biochips," in Proc. Asia and South Pacific Design Automation Conference, 2013

[14]Tung-Chieh Chen and Yao-Wen Chang, "Modern floorplanning based on B*-tree and fast simulated annealing," in Proc. Computer-Aided Design of Integrated Circuits and Systems, 2006.

[15]Jason Cong and Cheng-Kok Koh, "Minimum-Cost Bounded-Skew Clock Routing," in Proc. Circuits and Systems, 1995.

[16]Jason Cong, Andrew B. Kahng, Cheng-Kok Koh, and C.-W. Albert Tsao, "Bounded-Skew Clock and Steiner Routing Under Elmore Delay," in Proc. Computer Aided Design, 1995.

[17]M. Edahiro, “A clustering-based optimization algorithm in zero-skew routings,” in Proc. Design Automation Conference, 1993.

[18]Dennis J.-H. Huang, Andrew B. Kahng, and Chung-Wen Albert Tsao, "On the Bounded-Skew Clock and Steiner Routing Problems," in Proc. Design Automation Conference, 1995.

[19]Ting-Hai Chao, Yu-Chin Hsu, Jan-Ming Ho, Kenneth D. Boese, and Andrew B. Kahng, "Zero Skew Clock Routing With Minimum Wirelength," Circuits and Systems II: Analog and Digital Signal Processing, vol.39, pp. 799-814, 1992

[20]Andrew B. Kahng and Chung-Wen Albert Tsao, "Planar-DME: A Single-Layer Zero-Skew Clock Tree Router," Computer-Aided Design of Integrated Circuits and Systems, vol. 15, pp. 8-19, 1996.


[21]Andrew B. Kahng and Chung-Wen Albert Tsao, "More Practical Bounded-Skew Clock Routing," in Proc. Design Automation Conference, 1997.

[22]Jinan Lou, Shashidhar Thakur, Shankar Krishnamoorthy, and Henry S. Sheng, "Estimating Routing Congestion Using Probabilistic Analysis," Computer-Aided Design of Integrated Circuits and Systems, vol. 21, pp. 32-41, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔