|
[1]M.J. Schulte, E. E. Swartzlander, Jr. “Hardware Designs for Exactly Rounded Elementary Functions,” IEEE Transactions on Computers, 43(8):964–973, August 1994. [2] K. E. Wires, M. J. Schulte, L. P. Marquette, and P. I. Balzola. “Combined Unsigned and Two’s Complement Squarers,” In Proceedings of the 33rd Asilomar Conference on Signals, Systems, and Computers, volume 2, pages 1215–1219, Pacific Grove, CA, October 1999. [3] A. A. Liddicoat, M. J. Flynn, “Parallel Square and Cube Computation” In IEEE 34th Asilomar Conference on Signals, Systems and Computers, 2000 [4] Walters, E.G., III; Schulte, M.J. “Efficient Function Approximation Using Truncated Multipliers and Squarers,” In Proceedings of the 17th IEEE Symposium on Computer Arithmetic, Cape Cod, MA, USA, 27–29 June 2005; pp. 232–239. [5] D. Lee, R. Cheung, W. Luk, and J. Villasenor, “Hardware implementation trade-offs of polynomial approximations and interpolations,” IEEE Trans. Comput., vol. 57, no. 5, pp. 686–701, May 2008. [6] E. G. Walters, III, “Linear and quadratic interpolators using truncated-matrix multipliers and squarers,” Computers, vol. 4, no. 4, pp. 293–321, Dec. 2015. [7] M. Sadeghian, J. E. Stine, and E. G. Walters, III, “Optimized linear, quadratic and cubic interpolators for elementary function hardware implementation,” Electronics, vol. 5, no. 12, p. 17, Jun. 2016. [8] Davide De Caro, E. Napoli, D. Esposito, “Minimizing Coefficients Wordlength for Piecewise-Polynomial Hardware Function Evaluation With Exact or Faithful Rounding,” IEEE Trans. on Circuit and Systems, vol. pp, no. 99, pp. 1-14, January 2017. [9] V. G. Oklobdzija, D. Villeger, and S. S. Liu, “A method for speed optimized partial product reduction and generation of fast parallel multipliers using an algorithmic approach,” IEEE Trans. Comput., vol. 45, no. 3, pp. 294–306, Mar. 1996. [10] M. J. Schulte and E. E. Swartzlander Jr., “Truncated multiplication with correction constant,” VLSI Signal Processing VI, pp. 388–396, 1993 [11] Walters, E.G., III; Schulte, M.J.; Arnold, M.G. “Truncated Squarers with Constant and Variable Correction,” In Proceedings of the SPIE: Advanced Signal Processing Algorithms, Architectures, and Implementations XIV, Denver, CO, USA, 4–6 August 2004; Volume 5559, pp. 40–50. [12] H. J. Ko and S.F. Hsia, “Design and Application of Faithfully Rounded and Truncated Multipliers with Combined Deletion, Reduction, and Rounding”, IEEE trans. Circuit system II Exp. Briefs, vol. 58, no. 5 pp. 304-308 May 2011. [13] S. F. Hsiao, H. J. Ko, and C. S. Wen, “Two-level hardware function evaluation based on correction of normalized piecewise difference functions,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 59, no. 5, pp. 292–296, May 2012. [14] S. F. Hsiao, C. S. Wen, and P. H. Wu, “Compression of lookup table for piecewise polynomial function evaluation,” in Proc. 17th Euromicro Conf. Digit. Syst. Design (DSD), Aug. 2014, pp. 279–284. [15] De Dinechin, F. Tisserand, A. “Multipartite Table Methods,” IEEE Trans. Comput. 2005, 54, 319–330. [16] A.G.M. Strollo, D. De Caro, and N. Petra, “Elementary Functions Hardware Implementation Using Constrained Piecewise-Polynomial Approximations,” IEEE Trans. on Computers, vol.60, no.3, pp.418-432, Mar. 2011. [17] D-U Lee, “Hierarchical Segmentation for Hardware Function Evaluation” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 17, No. 1, pp. 103-116 , Jan. 2009 [18] S. F. Hsiao, H. J. Ko, Y. L. Tseng, W. L. Huang, S. H. Lin, and C. S. Wen, "Design Of Hardware Function Evaluators Using Low-Overhead Non-uniform Segmentation With Address Remapping," The IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 5, pp. 875-886, May 2013. [19] S.-F. Hsiao, C.-S. Wen, Y.-H. Chen, and K.-C. Huang, “Hierarchical Multipartite Function Evaluation,” IEEE Transactions on Computers, Early Access Articles, 2016. [20] A. Mohamed and A. Nadjia and B. Hamid and I. Mohamed, “Reconfigurable architecture for elementary functions evaluation,” 2009 IEEE/ACS International Conference on Computer Systems and Applications, May, 2009. [21] K. A. C. Bickerstaff, M. Schulte, and E. E. Swartzlander, “Reduced area multipliers,” in Proc. Int. Conf. on Application-Specific Array Processors, 1993, pp. 478–489. [22] E. J. King and E. Swartzlander, “Data-dependent truncation scheme for parallel multipliers,” in IEEE Asilomar Conference on Signals, Systems & Computers, vol. 2, pp. 1178–1182, 1997. [23] D. De Caro, et al., “A 380 MHz Direct Digital Synthesizer/Mixer with Hybrid CORDIC Architecture in 0.25 _m CMOS,” IEEE Journal of Solid-State Circuits (JSSC), vol. 42, no. 1, pp.151-160, Jan. 2007. [24] D. De Caro, N. Petra, and A. G. M. Strollo, “Digital Synthesizer Mixer ith Hybrid CORDIC–Multiplier Architecture, Error Analysis and Optimization,” IEEE Trans. Circuit sand Systems-I, vol. 56, no. 2, pp. 364-373, Feb. 2009. [25] D. Fu and A. N. Willson, Jr., “A Two-Stage Angle-Rotation Architecture and Its Error Analysis for Efficient Digital Mixer Implementation,” IEEE Trans on Circuits and Systems-I, vol. 53, no. 3, pp. 604-614, Mar. 2006. [26] J.A. Pineiro, J.M. Muller, and J.D. Bruguera, “High-Speed Function Approximation Using a Minimax Quadratic Interpolator,” IEEE Trans on Computers, vol. 54, no. 3, pp. 304-318, Mar. 2005. [27] V.G.Oklobdzija, D.Villeger, and S.S.Liu, “Improving Multiplier Design by Using Improved Column Compression Tree and Optimized Final Adder in CMOS Technology,” IEEE Trans. VLSI Systems,vol.3, no.2,pp.292-301,June 1995. [28] S. F. Hsiao, P. H. Wu, C. S. Wen, and P. K. Meher, “Table size reduction methods for faithfully rounded lookup-table-based multiplierless function evaluation,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no. 5, pp. 466–470, May 2015.
|