[1]R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signature and public-key cryptosystems,”Communications of the ACM, vol. 21, pp. 120-126, Feb. 1978.
[2]P. L. Montgomery, “Modular multiplication without trial division,” Mathmatics Computation, vol. 44, pp. 519-521, Apr. 1985
[3]C. Walter, “Systolic Modular Multiplication,” IEEE Trans. Computers, vol. 35, no. 1, pp. 1-12 Jan, 1986.
[4]P. Kornerup, “High-Radix Modular Multiplication for Cryptosystems,” Proc. IEEE Symp. Computer Arithmetic, pp. 277-283, Jun 1993.
[5]Holger Orup, “ Simplifying Quotient Determination in High-Radix Modular
Multiplication, ” IEEE Symp. Computer Arithmetic, pp. 193-199, Jul. 1995.
[6]T. Blun and C. Paar, “Montgomery Modular Exponentiation on Reconfigurable Hardware,” Proc. 14th IEEE Symp. Computer Arithmetic, pp. 70-77, Apr. 1999
[7]C. D. Walter, “Montgomery exponentiation needs no final subtractions,” Elextron. Lett., vol. 32, no. 21, pp. 1831-1832, Oct. 1999.
[8]T. W. Kwon, C. S. You, W. S. Heo, Y. K. Kang, and J. R. Choi, “Two implementation methods of a 1024-bit RSA cryptoprocessor based on modified Montgomery algorithm,” Proc. IEEE Int. Symp. Circuits Syst., vol. 4, pp. 650-653, May 2001.
[9]A. F. Tenca and C. K. Koc, “A scalable architecture for modular multiplication based on Montgomery’s algorithm,” IEEE Tans. Computers, vol. 52, no. 9, pp. 1215-1221, Sept. 2003.
[10]A. F. Tenca and A. Tawalbeh, “An efficient and Scalable Radix-4 Modular Modular Multiplier Design Using Recoding Techniques,” Proc. Asilomar Conf. Signals, Systems, and Computers, pp. 1445-1450, Nov. 2003.
[11]TSMC 0.90-μm (CL090G) Process 1.2-Volt SAGE-XTM Standard Cell Library Databook, Artisan Components, Sunnyvale, CA, Jan. 2004.
[12]A. Cilardo, A. Mazzeo, L. Romano, and G. P. Saggese, “Carry-save Montgomery modular exponentiation on reconfigurable hardware,” Proc. Des., Autom. Test Eur. Conf. Exhibition, vol. 3, pp.206-211, Feb. 2004.
[13]C. McIvor, M. McLoone, and J. V. McCanny, “Modified Montgomery modular multiplication and RSA exponentiation techniques,” IEE Proc. Computers and Digital Techniques, vol. 151, no. 6, pp. 402-408, Nov. 2004.
[14]D. Harris, R. Krishnamurthy, S. Mathew, and S. Hsu, “An improved unified scalable radix-2 Montgomery multiplier,” IEEE Symp. Computer Arithmetic, pp. 1196-1200, Jan. 2005.
[15]R. V. Kamala and M. B. Srinivas, “High-Throughput Montgomery Modular Multiplication,” IFIP International Conference on Very Large Scale Integration, pp. 58-62, Oct. 2006.
[16]N. Pinckney and D. Harris, “Parallelized radix-4 scalable Montgomery multipliers,” J. Integrated Circuits and Syst., vol. 3, no. 1, pp. 39-45, Mar. 2008.
[17]P. Amberg, N. Pinckney, and D. M. Harris, “Parallel High-Radix Montgomery Multipliers,” Proc. Asilomar Conf. Signals, Systems, and Computers, pp. 772-776, Oct. 2008.
[18]CIC Referenced Flow for Cell-based IC Design, National Chip Implementation Center, Hsinchu, Taiwan, 2008.
[19]M. D. Shieh and W. C. Lin. “Word-Based Montgomery Modular Multiplication Algorithm for Low-Latency Scalable Architecutures,” IEEE Trans. Computers, vol. 59, no. 8, pp. 1145-1151, Aug. 2010.
[20]G. Sassaw, C.J. Jimenez, and M. Valencia, “High Radix Implementation of
Montgomery Multipliers with CSA,” International Conference on
Microelectronics (ICM), pp. 315-318, Dec. 2010.
[21]M. Huang, K. Gaj, and T. El-Ghazawi, “New Hardware Architectures for Montgomery Modular Multiplication Algorithm,” IEEE Trans. Computer, vol. 60, no. 7, pp. 923-936, July 2011.
[22]S. H. Wang, W. C. Lin, J. H. Ye, and M. D. Shieh, “Fast Scalable Radix-4 Montgomery Modular Multiplier,” IEEE International Symposium Circuits and Systems, pp. 3049-3052, May 2012.
[23]張凱程, “適用於RSA加解密系統之高效能低功率可調式模數乘法器,” 國立中山大學, 碩士論文, July 2010.[24]許桓偉, “適用於RSA 加解密系統之高效能低功率模數乘法器,” 國立中山大學, 碩士論文, 2011.[25]許弘譯, “適用於RSA 密碼系統的高效能基數-4 蒙哥馬利模數乘法器,” 國立中山大學, 碩士論文, 2011.
[26]余其坤, “適用於低功率應用的多重模式浮點乘加器,” 國立中山大學, 碩士論文, 2011[27]陳佳妏, “低耗能多重字組模數乘法器之設計,” 國立中山大學, 碩士論文, July 2012[28]邱昶騰, “高效能高基數蒙哥馬利模數乘法器,” 國立中山大學, 碩士論文, July 2013.[29]蔡嘉和, “高效能基數四之字組式蒙哥馬利模數乘法器,” 國立中山大學, 碩士論文, July 2014.[30]呂仁堯 , “高效能高基數之字組式蒙哥馬利模數乘法器,“ 國立中山大學, 碩士論文, 2014[31]陳俊吉,“高基數字組式蒙哥馬利乘法器之通用化設計方法, ” 國立中山大學, 碩士論文, 2015.[32]陳彥儒,“基於混合式基數字組式蒙哥馬利模數乘法演算法之RSA密碼演算法硬體架構, ” 國立中山大學, 碩士論文, 2016.[33]李柏翰,“快速RSA加解密系統之低成本模指數架構, ” 國立中山大學, 碩士論文, 2017.[34]A. Miyamoto, N. Homma, T. Aoki, and A. Satoh, “Systematic Design of RSA Processors Based onHigh-Radix Montgomery Multipliers,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 19, no. 7, pp. 1136-1146, July. 2011