# 臺灣博碩士論文加值系統

(44.200.27.215) 您好！臺灣時間：2024/04/20 08:23

:::

### 詳目顯示

:

• 被引用:0
• 點閱:96
• 評分:
• 下載:4
• 書目收藏:0
 大部分現行的部分週期樣式探勘之研究都只考慮樣式在週期片段資料中的出現頻率來決定樣式的重要性，並假設每個事件的效益值是一樣的。因此，使用傳統部分週期樣式探勘方法將使得一些具高效益但卻出現頻率較低的事件項目不易被挖掘出來。在本論文中，我們將原始問題擴展到高效率部分週期性樣式挖掘，其不僅考慮事件的發生時間順序和周期長度，而且還考慮了它們的數量和利潤。我們設計了一個週期效用函數，並且基於此函數我們提出了三種挖掘高效益部分週期樣式的演算法。第一個方法使用了兩階段週期效益上界模型為基礎，以避免在挖掘過程中的資訊遺失，它並可以作為實驗比較的基礎。第二個方法則藉著逐漸收縮效益上界值來進一步增進演算法的效率。第三個方法則採用了投影技巧來避免不必要的檢查及減少執行時間。最後，在各種參數設置下對這三種算法的性能進行實驗比較而實驗結果顯示投影方法在這三種方法中表現最好。
 The existing studies related to partial periodic pattern mining only consider the frequency of patterns in periodic segment data to determine their significance, and the same utility is assumed for all events. Thus, some events with high utility but low frequency may not be found by using traditional partial periodic pattern mining techniques. In this thesis, we extend the original problem to high-utility partial periodic pattern mining (HUPPP), which considers not only the occurring time order and periodic length of events but also their quantities and individual profits. We have designed a periodic utility function, and based on it we have proposed three mining algorithms for finding high-utility partial periodic patterns. The first one is the basic algorithm that uses the two-phased periodic utility upper-bound (PUUB) model to avoid information loss in the mining process. It can be used as the ground-truth for experimental comparison. The second one further improves the efficiency by using the gradually pruning algorithm to shrink the utility upper-bounds. The third one adopts the projection technique to avoid unnecessary checking and reduce execution time. Finally, experiments are made to compare the performance of the three proposed algorithms under various parameter settings. Experimental results show the projection approach has the best performance among them.
 論文審定書 i誌謝 ii摘要 iiiAbstract ivContents vList of Tables viList of Figures viiChapter 1 Introduction 11.1 Background 11.2 Contribution 31.3 Thesis Organization 5Chapter 2 Related Works 62.1 Sequential pattern mining 62.2 Utility pattern mining 102.3 Periodic pattern mining 11Chapter 3 The Proposed Algorithm 143.1 Definition 143.2 The High Utility Periodic Pattern Mining Algorithm (HUPPP) 233.2.1 HUPPP 243.2.2 An Example of HUPPP 283.3 The High Utility Periodic Pattern Mining with Gradually Pruning Algorithm (GPA) 363.3.1 GPA 373.3.2 An Example of the GPA 423.4 The High Utility Periodic Pattern Mining with Projected Database Algorithm 513.4.1 Projected Database Algorithm 523.4.2 An Example of the Projected Database Algorithm 58Chapter 4 Experiments 684.1 Experimental Environment 684.2 Experimental Evaluation 69Chapter 5 Conclusion and Future Work 755.1 Conclusion 755.2 Future Work 76References 77
 [1]R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” The 20th International Conference on Very Large Data Bases, pp. 487-499, 1994.[2]R. Agrawal and R. Srikant, “Mining sequential patterns,” The 11th International Conference on Data Engineering, pp. 3-14, 1995.[3]J. Ayres, J. Flannick, J. Gehrke and T. Yiu, “Sequential pattern mining using a bitmap representation,” The Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 429-435, 2002.[4]S. Aseervatham, A. Osmani and E. Viennet, “bitSPADE: A lattice-based sequential pattern mining algorithm using bitmap representation,” The Sixth International Conference on Data Mining, pp. 792-797, 2006.[5]C. F. Ahmed, S. K. Tanbeer and B. S. Jeong, “A novel approach for mining high-utility sequential patterns in sequence databases,” Electronics and Telecommunications Research Institute journal, vol. 32, pp. 676-686, 2010.[6]M. S. Chen, J. Han and P. S. Yu, “Data mining: an overview from a database perspective,” IEEE Transactions on Knowledge and data Engineering, vol. 8, no. 6, pp. 866-883, 1996.[7]A. Erwin, R. P. Gopalan and N. R. Achuthan, “CTU-Mine: an efficient high utility itemset mining algorithm using the pattern growth approach,” The Seventh International Conference on Computer and Information Technology, pp. 71-76, 2007.[8]Frequent itemset mining dataset repository, http://ﬁmi.ua.ac.be/data/, 2012.[9]P. Fournier-Viger, T. Gueniche and V. S. Tseng, “Using partially-ordered sequential rules to generate more accurate sequence prediction,” The International Conference on Advanced Data Mining and Applications, pp. 431-442, 2012.[10]P. Fournier-Viger, C. W. Wu, S. Zida and V. S. Tseng, “FHM: faster high-utility itemset mining using estimated utility co-occurrence pruning,” The 21st International Symposium on Methodologies for Intelligent Systems, pp. 83-92, 2014.[11]P. Fournier-Viger, A. Gomariz, M. Campos and R. Thomas, “Fast vertical mining of sequential patterns using co-occurrence information,” The 18th Paciﬁc-Asia Conference on Knowledge Discovery and Data Mining, pp. 40–52, 2014.[12]E. Z. Guan, X. Y Chang, Z. Wang and C. G. Zhou, “Mining maximal sequential patterns,” The Second International Conference on Neural Networks and Brain, pp. 525-528, 2005.[13]C. Gao, J. Wang, Y. He and L. Zhou, “Efficient mining of frequent sequence generators,” The 17th International Conference on the World Wide Web, pp. 1051-1052, 2008.[14]J. Han, W. Gong and Y. Yin, “Mining segment-wise periodic patterns in time-related databases,” The Fourth International Conference on Knowledge Discovery and Data Mining, pp. 214-218, 1998.[15]J. Han, G. Dong and Y. Yin, “Efficient mining of partial periodic patterns in time series databases,” The 15th International Conference on Data Engineering, pp. 106-115, 1999.[16]T. P. Hong, K. Y. Lin and S. L. Wang, “Mining fuzzy sequential patterns from multiple-items transactions,” The Ninth IFSA World Congress and The 20th NAFIPS International Conference, pp. 1317-1321, 2001.[17]J. Han, J. Pei, Y. Ying and R. Mao, “Mining frequent patterns without candidate generation: a frequent-pattern tree approach,” Data Mining and Knowledge Discovery, vol. 8, pp. 53-87, 2004.[18]K. Y. Huang and C. H. Chang, “Mining periodic patterns in sequence data,” The International Conference on Data Warehousing and Knowledge Discovery, pp. 401-410, 2004.[19]Y. Liu, W. Liao and A. Choudhary, “A two-phase algorithm for fast discovery of high utility itemsets,” The Ninth Paciﬁc-Asia Conference on Knowledge Discovery and Data Mining, pp. 689-695, 2005.[20]C. W. Lin, G. C. Lan and T. P. Hong, “An incremental mining algorithm for high utility itemsets,” Expert Systems with Applications, vol. 39, pp. 7173-7180, 2012.[21]G. C. Lan, T. P. Hong and V. S. Tseng, “An efficient gradual pruning technique for utility mining,” International Journal of Innovative Computing, Information and Control, vol. 8, pp. 5165-5178, 2012.[22]G. C. Lan, T. P. Hong, V. S. Tseng and S. L. Wang, “Applying the maximum utility measure in high utility sequential pattern mining,” Expert Systems with Applications, vol. 41, pp. 5071-5081, 2014.[23]G. C. Lan, T. P. Hong and V. S. Tseng, “An efficient projection-based indexing approach for mining high utility itemsets,” Knowledge and Information Systems, vol. 38, pp. 85-107, 2014.[24]H. Mannila, H. Toivonen and A. I. Verkamo, “Discovering frequent episodes in sequences,” The First International Conference on Knowledge Discovery and Data Mining, pp. 210-215, 1995.[25]M. Muzammal and R. Raman, “On probabilistic models for uncertain sequential pattern mining,” The International Conference on Advanced Data Mining and Applications, pp. 60-72, 2010.[26]M. A. Nishi, C. F. Ahmed, Md. Samiullah and B. S. Jeong, “Effective periodic pattern mining in time series databases,” Expert Systems with Applications, vol. 40, pp. 3015-3027, 2013.[27]B. Özden, S. Ramaswamy and A. Silberschatz. “Cyclic association rules,” The 14th International Conference on Data Engineering, pp. 412-421, 1998.[28]J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal and M. C. Hsu, “Mining sequential patterns by pattern-growth: The preﬁxspan approach,” IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 11, pp. 1424-1440, 2004.[29]T. T. Pham, J. Luo, T. P. Hong and B. Vo, “MSGPs: a novel algorithm for mining sequential generator patterns,” The Fourth International Conference on Computational Collective Intelligence, pp. 393-401, 2012.[30]Y. Pokou, P. Fournier-Viger and C. Moghrabi, “Authorship attribution using small sets of frequent part-of-speech skip-grams,” The International Florida Artificial Intelligence Research Society Conference, pp. 86-91, 2016.[31]R. Srikant and R. Agrawal, “Mining sequential patterns: Generalizations and performance improvements,” The International Conference on Extending Database Technology, pp. 1-17, 1996.[32]S. K. Tanbeer, C. F. Ahmed, B. S. Jeong and Y. K. Lee, “Discovering periodic-frequent patterns in transactional databases,” The 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 242-253, 2009.[33]V. S. Tseng, C. W. Wu, B. E. Shie and P. S. Yu, “UP-Growth: an efficient algorithm for high utility itemset mining,” The ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 253-262, 2010.[34]J. Wang, J. Han and C. Li, “Frequent closed sequence mining without candidate maintenance,” IEEE Transactions on Knowledge Data Engineering, vol. 19, pp. 1042-1056, 2007.[35]X. Yan, J. Han and R. Afshar, “Clospan: mining closed sequential patterns in large datasets,” The 2003 SIAM International Conference on Data Mining, pp. 166-177, 2003.[36]H. Yao, H. J. Hamilton and C. J. Butz, “A foundational approach to mining itemset utilities from databases,” The 2004 SIAM International Conference on Data Mining, pp. 482-486, 2004.[37]U. Yun and J. J. Leggett, “WSpan: weighted sequential pattern mining in large sequence databases,” IEEE International Conference on Intelligent Systems, pp. 512-517, 2006.[38]K. J. Yang, T. P. Hong, Y. M. Chen and G. C. Lan, “Projection-based partial periodic pattern mining for event sequences.” Expert Systems with Applications, vol. 40, pp. 4232-4240, 2013.[39]U. Yun, G. Lee and E. Yoon, “Efficient high utility pattern mining for establishing manufacturing plans with sliding window control,” IEEE Transactions on Industrial Electronics, vol. 64, pp. 7239-7249, 2017.[40]M. J. Zaki, “SPADE: an eﬃcient algorithm for mining frequent sequences,” Machine Learning, vol. 42, pp. 31-60, 2001.[41]S. Ziebarth, I. A. Chounta and H. U. Hoppe, “Resource access patterns in exam preparation activities,” The 10th European Conference on Technology Enhanced Learning, pp. 497-502, 2015.
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 利用多重支持度探勘部份週期性樣式 2 具一致性關聯規則之有效探勘方法 3 有效探勘不同長度之部份週期樣式 4 利用多重支持度探勘部份週期性樣式

 無相關期刊

 1 透過語意特徵與自動產生瀏覽紀錄學習之音樂存取 2 針對商品刪除與修改之可篩除項目集維護技術 3 在資料探勘中頻繁項目集的精簡表示法 4 利用深度學習於圖像中機車之辨識與計數 5 使用模糊集合優化群組股票投資組合 6 高效率重複樣式探勘演算法 7 漸進式準可篩除項目集探勘之研究 8 舊商圈創新服務模式之研究：以大稻埕商圈為例 9 以新加坡產業發展策略探討台灣服務業之經營困境 10 整合多資料來源可篩除項目集 11 時序性模糊效益探勘演算法之研究 12 從社群網路用戶使用記錄探勘階層互動關係及其應用 13 以投資者情緒指標為基礎的多樣群組股票組合最佳化之研究 14 南部大專學生政策議題之認知結構─以土地徵收政策為例 15 使用線上電解削銳的導電高分子工具電解複合磨粒拋光純鋁圓桿之研究

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室