跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/15 06:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王書海
研究生(外文):Shu-Hai Wang
論文名稱:知識本體論為基礎語意問答系統之唐氏症應用
論文名稱(外文):Ontology-Based Semantic Q&A system in Health Care: An IllustratedApplication on Down Syndrome
指導教授:林耕霈
指導教授(外文):Keng-Pei Lin
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊管理學系研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:59
中文關鍵詞:自然語言處理醫療照護同義詞語意問答系統知識本體論
外文關鍵詞:Natural language processHealthcareSynonymsOntologySemantic Q&A system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:408
  • 評分評分:
  • 下載下載:114
  • 收藏至我的研究室書目清單書目收藏:1
知識本體論為基礎的醫療照護語意問答系統之唐氏症應用,主要是應用知識本體論去組織與分類唐氏症相關的知識與資訊所建立而成的語意問答系統,這個系統提供使用者可以使用口語化的中文問句來輸入問題,系統會先將問句透過CKIP中研院斷詞系統的API將問句斷詞,分析出可以用在知識本體論上做推論的三個主要詞性用詞:主要醫療相關名詞、意圖動詞、疑問意圖這三個關鍵用詞;再藉由本篇論文所研究建立的SPARQL查詢語法在本體論上做推論,找出符合查詢句條件所對應的內容,當作問題的答案;此外,當問題無法準確分析出這些必須的關鍵詞時,會先使用SPARQL查詢句找出可能的相關詞並且重組問句回傳給使用者來引導使用者找到問題的答案。實驗的部份我們邀請專業婦產科醫生來協助評估問題回答的內容,評估的問題是透過網路上隨機選擇30題相關的唐氏症問題,答案的部分是藉由本篇研究所建立的語意問答系統以及目前線上有針對醫療相關的問答系統的網站做比較。最後,採用變異數的單變量分析得到結果為顯著,表示我們系統的回答結果有較好且正確的回答內容與資訊。
This study presents an ontology-based Semantic Question and Answer (Q&A) system applied to the Down Syndrome in Healthcare. We proposed a Q&A system which allows for users to ask questions in natural language, and the system will search the answers from the ontology by reasoning with related keywords from the natural language searched. In order to figure out what users’ questions meant we use the Classified Knowledge and Information Processing (CKIP) to tokenize words and to tag Part-Of-Speech (POS) in the questions. This Q&A system also uses a combination of three keywords, including medical terminologies, intention words which only exist in the domain of Medicine, and words of 5W1H, to analyze natural language questions. These three kinds of keywords allow our approach of answer extraction to reason in the ontology by formulated SPARQL queries. This system has been developed and tested in the Chinese language. The ontology is being adopted for classifying Down syndrome related information. We have carried out experiments to evaluate our approach of question analysis and answer extraction. The preliminary result shows that the excellent performance of our proposed approach.
1. Introduction + 1
1.1 Background + 1
1.2 Motivation + 3
2. Related works + 6
2.1 Question and Answer System + 6
2.1.1 Question Analysis + 6
2.1.2 Answers Analysis + 7
2.2 NLP-based Q&A system + 9
2.2.1 Lexical Analysis + 9
2.2.2 Semantic Analysis + 10
2.3 Semantic Web + 12
2.3.1 Ontology + 13
2.3.2 Building Ontology + 14
2.3.3 Application based on Ontology + 15
3. The Approach + 17
3.1 Skeleton of our Approach + 17
3.2 Question Analysis + 19
3.2.1 Word tokenization and Part of Speech (POS) Tagging in Chinese + 21
3.2.2 Keywords Identify + 21
3.3 Answer Extract + 26
3.3.1 SPARQL Queries + 26
3.4 Building Ontology + 31
4. Evaluation + 38
4.1 Evaluation of our approaches + 38
4.2 Evaluated with Different system + 40
5.Conclusion + 46
Reference + 49
Bao, Junwei, Nan Duan, Ming Zhou, and Tiejun Zhao. 2014. “Knowledge-Based Question Answering as Machine Translation.” Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers): 967–76. http://www.aclweb.org/anthology/P/P14/P14-1091.
Besbes, Ghada, Hajer Baazaoui-Zghal, and Antonio Moreno. 2013. “Ontology-Based Question Analysis Method.” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8132 LNAI: 100–111.
Bilotti, Matthew W et al. 2007. “Structured Retrieval for Question Answering System A : Bag-of-Words Approach System B : Structured Approach.” Proceedings of the Thirtieth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2007: 351–58.
Buitelaar, Paul, et al. 2008. Ontology-based information extraction and integration from heterogeneous data sources. International Journal of Human-Computer Studies 66.11 2008: 759-788.
Buscaldi, Davide, José Manuel Gomez, Paolo Rosso, and Emilio Sanchis. 2007. “N-Gram vs. Keyword-Based Passage Retrieval for Question Answering.” Evaluation of Multilingual and Multi-modal Information Retrieval 4730: 377–84.
Cao, YongGang et al. 2011. “AskHERMES: An Online Question Answering System for Complex Clinical Questions.” Journal of Biomedical Informatics 44(2): 277–88.
Chan, Wen et al. 2014. “Term Selection and Result Reranking for Question Retrieval by Exploiting Hierarchical Classification.” Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management: 141–50.
Chandrasekaran B., John R. Josephson, V. Richard Benjamins. 1999. What are ontologies, and why do we need them?. IEEE Intelligent systems.
Fleming, J. 2003. Health information on the Internet. The Journal of the Royal Society for the Promotion of Health.
Figueroa, Alejandro, Carlos Gómez-Pantoja, and Ignacio Herrera. 2016. “Search Clicks Analysis for Discovering Temporally Anchored Questions in Community Question Answering.” Expert Systems with Applications 50: 89–99.
Frank, Anette et al. 2007. Question answering from structured knowledge sources. Journal of Applied Logic. 5.1.
Guarino, Nicola. 1997. Understanding, building and using ontologies. International Journal of Human-Computer Studies 46.2.
Guo, Qinglin, and Ming Zhang. 2009. “Question Answering Based on Pervasive Agent Ontology and Semantic Web.” Knowledge-Based Systems 22(6): 443–48.
Heba Kurdi, Sara Alkhaider, Nada Alfaifi, and Department. 2014. “Development and Evaluation of a Web Based Question Answering System for Arabic Language.” Logic-based approach for improving Arabic question answering. Computational Intelligence and Computing Research (ICCIC), 2014 IEEE International Conference on. IEEE, 2014.‏ (June): 187–202.
Ko, Jeongwoo, Teruko Mitamura, and Eric Nyberg. 2007. “Language-Independent Probabilistic Answer Ranking for Question Answering.” (2): 784–91.
Lin, Chi Wei. 2009. Identifying Question Intention in Question Analysis for Medical Question Answering. NCKU.
McMullan, M. 2006. Patients using the Internet to obtain health information: How this affects the patient-health professional relationship. Patient Education and Counseling.
Minyoung Ra, Donghee Yoo, Sungchun No, Jinhee Shin, Changhee Han, 2012. The mixed ontology building methodology using database information. In: International Multi-conference of Engineers and Computer Scientists, 14–16 March, Hong Kong, China, pp. 650–655. 2012.
Mohler, Michael, and Rada Mihalcea. 2009. “Text-to-Text Semantic Similarity for Automatic Short Answer Grading.” Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics (EACL ’09) (April): 567–75.
Moreda, Paloma, et al. 2011. "Combining semantic information in question answering systems." Information Processing & Management 47.6.
Moussa, Am, and Rf Abdel-Kader. 2011. “QASYO: A Question Answering System for YAGO Ontology.” International Journal of Database Theory and Application 4(2): 99–112.
Nguyen, Dat Quoc, Dai Quoc Nguyen, and Son Bao Pham. 2013. “KbQAS: A Knowledge-Based QA System.” CEUR Workshop Proceedings 1035: 109–12.
Noh, Hyungjong, Cheongjae Lee, Gwo Giun Lee. 2008. "Ontology-based inference for information-seeking in natural language dialog system." Industrial Informatics, 2008. INDIN 2008. 6th IEEE International Conference on. IEEE.
Nyberg, Eric. 2015. “Leveraging Procedural Knowledge for Task-Oriented Search Categories and Subject Descriptors.” : 513–22.
Pollock, Jeffrey T. 2009. Semantic web for dummies. John Wiley & Sons.
Sang, ETK, Gosse Bouma, and Maarten De Rijke. 2005. “Developing Offline Strategies for Answering Medical Questions.” Proceedings of the AAAI-05 Workshop on Question Answering in Restricted Domains: 41–45.
Shiu, You-Hung. 2012. A Research Based on Weights of Words and Intentions Analysis to Enhance the Accuracy of Search Engines. Southern Taiwan University of Science and Technology.
Sondhi, Parikshit, and ChengXiang Zhai. 2014. “Mining Semi-Structured Online Knowledge Bases to Answer Natural Language Questions on Community QA Websites.” Cikm: 341–50.
Surdeanu, Mihai, Massimiliano Ciaramita, and Hugo Zaragoza. 2011. “Learning to Rank Answers to Non-Factoid Questions from Web Collections.” Computational Linguistics 37(2): 351–83.
Suresh kumar, G., and G. Zayaraz. 2015. “Concept Relation Extraction Using Naïve Bayes Classifier for Ontology-Based Question Answering Systems.” Journal of King Saud University - Computer and Information Sciences 27(1): 13–24.
Tymoshenko, Kateryna, and Alessandro Moschitti. 2015. “Assessing the Impact of Syntactic and Semantic Structures for Answer Passages Reranking.” Proceedings of the 24th ACM International on Conference on Information and Knowledge Management: 1451–60.
Wei Wang, Baichuan Li, Irwin King. 2011. Improving Question Retrieval in Community Question Answering with Label Ranking. Proceedings of International Joint Conference on Neural Networks, San Jose, California, USA, July 31 – August 5.
Wu, Fei, and Daniel S. Weld. 2008. “Automatically Refining the Wikipedia Infobox Ontology.” Proceeding of the 17th international conference on World Wide Web WWW 08 (January): 635–44.
Yang, Min Chul, Do Gil Lee, So Young Park, and Hae Chang Rim. 2015. “Knowledge-Based Question Answering Using the Semantic Embedding Space.” Expert Systems with Applications 42(23): 9086–9104.
Zhou, Guangyou et al. 2013. “Improving Question Retrieval in Community Question Answering Using World Knowledge.” IJCAI International Joint Conference on Artificial Intelligence: 2239–45.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top