|
Aggarwal, C. C., & Zhai, C. (2012). Mining text data. Springer Science & Business Media. Retrieved from https://www.google.com/books?hl=zh-TW&lr=&id=vFHOx8wfSU0C&oi=fnd&pg=PR3&dq=mutual+information+topic+modeling&ots=obag_JmIVy&sig=fQ_MXiuGSe8t_-QXuxA_1deQRg0 Arora, S., Ge, R., & Moitra, A. (2012). Learning Topic Models - Going beyond SVD. arXiv:1204.1956 [Cs]. Retrieved from http://arxiv.org/abs/1204.1956 Baker, L. D., & McCallum, A. K. (1998). Distributional clustering of words for text classification. In Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval (pp. 96–103). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=290970 Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research, 3(Jan), 993–1022. Cai, D., He, X., Han, J., & Huang, T. S. (2011). Graph regularized nonnegative matrix factorization for data representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8), 1548–1560. Carmel, D., Yom-Tov, E., Darlow, A., & Pelleg, D. (2006). What makes a query difficult? In Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 390–397). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=1148238 Choo, J., Lee, C., Reddy, C. K., & Park, H. (2013). Utopian: User-driven topic modeling based on interactive nonnegative matrix factorization. IEEE Transactions on Visualization and Computer Graphics, 19(12), 1992–2001. Gillis, N. (2014). The why and how of nonnegative matrix factorization. Regularization, Optimization, Kernels, and Support Vector Machines, 12(257). Retrieved from https://www.google.com/books?hl=zh-TW&lr=&id=5Y_SBQAAQBAJ&oi=fnd&pg=PA257&dq=The+Why+and+How+of+Nonnegative+Matrix+Factorization&ots=nwGtxapMBn&sig=TnywuixkEgkwtbnH5t0n5wrj58Y Gong, L., & Nandi, A. K. (2013). An enhanced initialization method for non-negative matrix factorization. In 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP) (pp. 1–6). https://doi.org/10.1109/MLSP.2013.6661949 Greene, D., & Cross, J. P. (2016). Exploring the Political Agenda of the European Parliament Using a Dynamic Topic Modeling Approach. arXiv:1607.03055 [Cs]. Retrieved from http://arxiv.org/abs/1607.03055 Greene, D., O’Callaghan, D., & Cunningham, P. (2014). How Many Topics? Stability Analysis for Topic Models. arXiv:1404.4606 [Cs]. Retrieved from http://arxiv.org/abs/1404.4606 Grosse, I., Bernaola-Galván, P., Carpena, P., Román-Roldán, R., Oliver, J., & Stanley, H. E. (2002). Analysis of symbolic sequences using the Jensen-Shannon divergence. Physical Review E, 65(4), 41905. Langville, A. N., Meyer, C. D., Albright, R., Cox, J., & Duling, D. (2014). Algorithms, initializations, and convergence for the nonnegative matrix factorization. arXiv Preprint arXiv:1407.7299. Retrieved from https://arxiv.org/abs/1407.7299 Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755), 788–791. Li, Z., Tang, Z., & Ding, S. (2013). Dictionary learning by nonnegative matrix factorization with 1/2-norm sparsity constraint. In Cybernetics (CYBCONF), 2013 IEEE International Conference on (pp. 63–67). IEEE. Retrieved from http://ieeexplore.ieee.org/abstract/document/6617435/ Liu, J., Wang, C., Gao, J., & Han, J. (2013). Multi-view clustering via joint nonnegative matrix factorization. In Proceedings of the 2013 SIAM International Conference on Data Mining (pp. 252–260). SIAM. Retrieved from http://epubs.siam.org/doi/abs/10.1137/1.9781611972832.28 Pascual-Montano, A., Carazo, J. M., Kochi, K., Lehmann, D., & Pascual-Marqui, R. D. (2006). Nonsmooth Nonnegative Matrix Factorization (nsNMF). IEEE Trans. Pattern Anal. Mach. Intell., 28(3), 403–415. https://doi.org/10.1109/TPAMI.2006.60 Stevens, K., Kegelmeyer, P., Andrzejewski, D., & Buttler, D. (2012). Exploring topic coherence over many models and many topics. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (pp. 952–961). Association for Computational Linguistics. Retrieved from http://dl.acm.org/citation.cfm?id=2391052 Xu, W., Liu, X., & Gong, Y. (2003). Document clustering based on non-negative matrix factorization. In Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval (pp. 267–273). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=860485 Zou, H., Zhou, G., & Xi, Y. (2011). Research on Modeling Microblog Posts Scale Based on Nonhomogeneous Poisson Process. In G. Zhiguo, X. Luo, J. Chen, F. L. Wang, & J. Lei (Eds.), Emerging Research in Web Information Systems and Mining (pp. 99–112). Springer Berlin Heidelberg. Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-24273-1_14 機器學習中的數學(5)-強大的矩陣奇異值分解(SVD)及其應用- LeftNotEasy - 博客園. (n.d.). Retrieved November 18, 2016, from http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html
|