|
[1]Ahmad, S. R. (2003). Adverse Drug Event Monitoring at the Food and Drug Administration. Journal of General Internal Medicine, 18(1), 57-60. doi: 10.1046/j.1525-1497.2003.20130.x [2]Baccianella, S., Esuli, A., & Sebastiani, F. (2010). SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining. LREC. [3]Basch, E. (2010). The Missing Voice of Patients in Drug-Safety Reporting. New England Journal of Medicine, 362(10), 865-869. doi: 10.1056/NEJMp0911494 [4]Benton, A., Ungar, L., Hill, S., Hennessy, S., Mao, J., Chung, A., . . . Holmes, J. H. (2011). Identifying potential adverse effects using the web: A new approach to medical hypothesis generation. Journal of biomedical informatics, 44(6), 989-996. doi: 10.1016/j.jbi.2011.07.005 [5]Bian, J., Topaloglu, U., & Yu, F. (2012). Towards large-scale twitter mining for drug-related adverse events. Paper presented at the Proceedings of the 2012 international workshop on Smart health and wellbeing, Maui, Hawaii, USA. [6]Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. [7]Chee, B. W., Berlin, R., & Schatz, B. (2011). Predicting adverse drug events from personal health messages. Paper presented at the AMIA Annu Symp Proc. [8]Chunara, R., Andrews, J. R., & Brownstein, J. S. (2012). Social and news media enable estimation of epidemiological patterns early in the 2010 Haitian cholera outbreak. The American journal of tropical medicine and hygiene, 86(1), 39-45. [9]Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. [10]Deyo, R. A. (2004). Gaps, tensions, and conflicts in the FDA approval process: implications for clinical practice. The Journal of the American Board of Family Practice, 17(2), 142-149. [11]Fox, S. (2011). The Social Life of Health Information, 2011. from http://www.pewinternet.org/2011/05/12/the-social-life-of-health-information-2011/ [12]Freifeld, C. C., Brownstein, J. S., Menone, C. M., Bao, W., Filice, R., Kass-Hout, T., & Dasgupta, N. (2014). Digital drug safety surveillance: monitoring pharmaceutical products in twitter. Drug Safety, 37(5), 343-350. [13]Freund, Y., & Schapire, R. E. (1995). A desicion-theoretic generalization of on-line learning and an application to boosting. Paper presented at the European conference on computational learning theory. [14]Giacomini, K. M., Krauss, R. M., Roden, D. M., Eichelbaum, M., Hayden, M. R., & Nakamura, Y. (2007). When good drugs go bad. Nature, 446(7139), 975-977. [15]Greaves, F., Ramirez-Cano, D., Millett, C., Darzi, A., & Donaldson, L. (2013). Harnessing the cloud of patient experience: using social media to detect poor quality healthcare. BMJ Quality & Safety, bmjqs-2012-001527. [16]Gurulingappa, H., Fluck, J., Hofmann-Apitius, M., & Toldo, L. (2011). Identification of adverse drug event assertive sentences in medical case reports. Paper presented at the First international workshop on knowledge discovery and health care management (KD-HCM), European conference on machine learning and principles and practice of knowledge discovery in databases (ECML PKDD). [17]Hazell, L., & Shakir, S. A. W. (2006). Under-Reporting of Adverse Drug Reactions. Drug Safety, 29(5), 385-396. doi: 10.2165/00002018-200629050-00003 [18]Hu, M., & Liu, B. (2004). Mining and summarizing customer reviews. Paper presented at the Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. [19]Internet Live Stats. (2017). Twitter Usage Statistics. from http://www.internetlivestats.com/twitter-statistics/ [20]Johnson, J. A., & Bootman, J. L. (1995). Drug-related morbidity and mortality. A cost-of-illness model. Arch Intern Med, 155(18), 1949-1956. [21]Kuhn, M., Campillos, M., Letunic, I., Jensen, L. J., & Bork, P. (2010). A side effect resource to capture phenotypic effects of drugs. Molecular Systems Biology, 6(1). doi: 10.1038/msb.2009.98 [22]Lazarou, J., Pomeranz, B. H., & Corey, P. N. (1998). Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA, 279(15), 1200-1205. [23]Leaman, R., Wojtulewicz, L., Sullivan, R., Skariah, A., Yang, J., & Gonzalez, G. (2010). Towards internet-age pharmacovigilance: extracting adverse drug reactions from user posts to health-related social networks. Paper presented at the Proceedings of the 2010 Workshop on Biomedical Natural Language Processing, Uppsala, Sweden. [24]Lindberg, D. A., Humphreys, B. L., & McCray, A. T. (1993). The Unified Medical Language System. Methods Inf Med, 32(4), 281-291. [25]Liu, M., Wu, Y., Chen, Y., Sun, J., Zhao, Z., Chen, X.-w., . . . Xu, H. (2012). Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs. Journal of the American Medical Informatics Association, 19(e1), e28-e35. [26]Mao, J. J., Chung, A., Benton, A., Hill, S., Ungar, L., Leonard, C. E., . . . Holmes, J. H. (2013). Online discussion of drug side effects and discontinuation among breast cancer survivors. Pharmacoepidemiology and drug safety, 22(3), 256-262. [27]Moore, T. J., Cohen, M. R., & Furberg, C. D. (2007). Serious adverse drug events reported to the Food and Drug Administration, 1998-2005. Arch Intern Med, 167(16), 1752-1759. doi: 10.1001/archinte.167.16.1752 [28]Nikfarjam, A., & Gonzalez, G. H. (2011). Pattern Mining for Extraction of mentions of Adverse Drug Reactions from User Comments. AMIA Annual Symposium Proceedings, 2011, 1019-1026. [29]Nikfarjam, A., Sarker, A., O’Connor, K., Ginn, R., & Gonzalez, G. (2015). Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. Journal of the American Medical Informatics Association, ocu041. [30]Niu, Y., Zhu, X., Li, J., & Hirst, G. (2005). Analysis of polarity information in medical text. Paper presented at the AMIA. [31]Owoputi, O., O''Connor, B., Dyer, C., Gimpel, K., Schneider, N., & Smith, N. A. (2013). Improved part-of-speech tagging for online conversational text with word clusters. [32]Owoputi, O., O’Connor, B., Dyer, C., Gimpel, K., & Schneider, N. (2012). Part-of-speech tagging for Twitter: Word clusters and other advances. School of Computer Science. [33]Patki, A., Sarker, A., Pimpalkhute, P., Nikfarjam, A., Ginn, R., Oconnor, K., . . . Gonzalez, G. (2014). Mining Adverse Drug Reaction Signals from Social Media: Going Beyond Extraction. [34]Pierce, C. E., Bouri, K., Pamer, C., Proestel, S., Rodriguez, H. W., Van Le, H., . . . Edwards, I. R. (2017). Evaluation of Facebook and Twitter Monitoring to Detect Safety Signals for Medical Products: An Analysis of Recent FDA Safety Alerts. Drug Safety, 1-15. [35]Plachouras, V., Leidner, J. L., & Garrow, A. G. (2016). Quantifying Self-Reported Adverse Drug Events on Twitter: Signal and Topic Analysis. Paper presented at the Proceedings of the 7th 2016 International Conference on Social Media & Society, London, United Kingdom. [36]Quinlan, J. R. (2014). C4. 5: programs for machine learning: Elsevier. [37]Rumelhart, D. E., & McClelland, J. L. (1985). On learning the past tenses of English verbs: DTIC Document. [38]Sampathkumar, H., Chen, X.-w., & Luo, B. (2014). Mining Adverse Drug Reactions from online healthcare forums using Hidden Markov Model. BMC Medical Informatics and Decision Making, 14(1), 91. doi: 10.1186/1472-6947-14-91 [39]Sarker, A., & Gonzalez, G. (2015). Portable automatic text classification for adverse drug reaction detection via multi-corpus training. Journal of biomedical informatics, 53, 196-207. doi: http://dx.doi.org/10.1016/j.jbi.2014.11.002 [40]Sultana, J., Cutroneo, P., & Trifirò, G. (2013). Clinical and economic burden of adverse drug reactions. Journal of Pharmacology & Pharmacotherapeutics, 4(Suppl1), S73-S77. doi: 10.4103/0976-500X.120957 [41]Whitebread, S., Hamon, J., Bojanic, D., & Urban, L. (2005). Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development. Drug discovery today, 10(21), 1421-1433. [42]Wilson, T., Wiebe, J., & Hoffmann, P. (2005). Recognizing contextual polarity in phrase-level sentiment analysis. Paper presented at the Proceedings of the conference on human language technology and empirical methods in natural language processing. [43]Yang, C. C., Yang, H., Jiang, L., & Zhang, M. (2012). Social media mining for drug safety signal detection. Paper presented at the Proceedings of the 2012 international workshop on Smart health and wellbeing, Maui, Hawaii, USA. [44]Yates, A., & Goharian, N. (2013). ADRTrace: Detecting Expected and Unexpected Adverse Drug Reactions from User Reviews on Social Media Sites. In P. Serdyukov, P. Braslavski, S. O. Kuznetsov, J. Kamps, S. Rüger, E. Agichtein, I. Segalovich, & E. Yilmaz (Eds.), Advances in Information Retrieval: 35th European Conference on IR Research, ECIR 2013, Moscow, Russia, March 24-27, 2013. Proceedings (pp. 816-819). Berlin, Heidelberg: Springer Berlin Heidelberg.
|