|
REFERENCE Abbott, M., & Wu, S. (2002). Total factor productivity and efficiency of Australian airports. Australian Economic Review, 35(3), 244-260. Agarwal, S., Kachroo, P., & Regentova, E. (2016). A hybrid model using logistic regression and wavelet transformation to detect traffic incidents. IATSS Research, 40(1), 56-63. Agresti, A., & Kateri, M. (2011). Categorical data analysis International encyclopedia of statistical science (pp. 206-208): Springer. Aigner, D. J., & Chu, S.-F. (1968). On estimating the industry production function. The American Economic Review, 826-839. Ali, F., Kwak, K.-S., & Kim, Y.-G. (2016). Opinion mining based on fuzzy domain ontology and Support Vector Machine: A proposal to automate online review classification. Applied Soft Computing, 47, 235-250. Antweiler, W., & Frank, M. Z. (2004). Is all that talk just noise? The information content of internet stock message boards. The Journal of Finance, 59(3), 1259-1294. Arbaugh, J. B., Cleveland-Innes, M., Diaz, S. R., Garrison, D. R., Ice, P., Richardson, J. C., & Swan, K. P. (2008). Developing a community of inquiry instrument: Testing a measure of the community of inquiry framework using a multi-institutional sample. The Internet and Higher Education, 11(3), 133-136. Bassem, B. S. (2014). Total factor productivity change of MENA microfinance institutions: A Malmquist productivity index approach. Economic Modelling, 39, 182-189. Bedwell, J., Gallagher, S., Whitten, S. N., & Fiore, S. M. (2011). Linguistic correlates of self in deceptive oral autobiographical narratives. Consciousness and cognition, 20(3), 547-555. Benhayoun, N., Chairi, I., El Gonnouni, A., & Lyhyaoui, A. (2013). Financial intelligence in prediction of firm''s creditworthiness risk: evidence from support vector machine approach. Procedia Economics and Finance, 5, 103-112. Bose, I. (2006). Deciding the financial health of dot-coms using rough sets. Information & Management, 43(7), 835-846. Camdeviren, H. A., Yazici, A. C., Akkus, Z., Bugdayci, R., & Sungur, M. A. (2007). Comparison of logistic regression model and classification tree: An application to postpartum depression data. Expert Systems with Applications, 32(4), 987-994. Cao, H., Li, X.-L., Woon, D. Y.-K., & Ng, S.-K. (2013). Integrated oversampling for imbalanced time series classification. IEEE Transactions on Knowledge and Data Engineering, 25(12), 2809-2822. Caves, D. W., Christensen, L. R., & Diewert, W. E. (1982). The economic theory of index numbers and the measurement of input, output, and productivity. Econometrica: Journal of the Econometric Society, 1393-1414. Cecchini, M., Aytug, H., Koehler, G. J., & Pathak, P. (2010). Making words work: Using financial text as a predictor of financial events. Decision Support Systems, 50(1), 164-175. Chan, S. W., & Chong, M. W. (2017). Sentiment analysis in financial texts. Decision Support Systems, 94, 53-64. Chang, H., Choy, H. L., Cooper, W. W., & Ruefli, T. W. (2009). Using Malmquist Indexes to measure changes in the productivity and efficiency of US accounting firms before and after the Sarbanes–Oxley Act. Omega, 37(5), 951-960. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444. Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357. Chen, W.-S., & Du, Y.-K. (2009). Using neural networks and data mining techniques for the financial distress prediction model. Expert Systems with Applications, 36(2), 4075-4086. Choe, W., Ersoy, O. K., & Bina, M. (2000). Neural network schemes for detecting rare events in human genomic DNA. Bioinformatics, 16(12), 1062-1072. Coelli, T. (1996). A guide to DEAP version 2.1: a data envelopment analysis (computer) program. Centre for Efficiency and Productivity Analysis, University of New England, Australia. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297. Costello, A. B., & Osborne, J. W. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical assessment, research & evaluation, 10(7), 1-9. Crossley, S. A., & McNamara, D. S. (2009). Computational assessment of lexical differences in L1 and L2 writing. Journal of Second Language Writing, 18(2), 119-135. Dale, E., & Chall, J. S. (1949). The concept of readability. Elementary English, 26(1), 19-26. De Souza, H. E., Barbedo, C. H. D. S., & Araújo, G. S. (2017). DOES INVESTOR ATTENTION AFFECT TRADING VOLUME IN THE BRAZILIAN STOCK MARKET? Research in International Business and Finance. Delen, D., Kuzey, C., & Uyar, A. (2013). Measuring firm performance using financial ratios: A decision tree approach. Expert Systems with Applications, 40(10), 3970-3983. Drummond, C., & Holte, R. C. (2003). C4. 5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling. Paper presented at the Workshop on learning from imbalanced datasets II. Erlin, U. (2013). Rio, Rahmiati, Text message categorization of collaborative learning skill s in online discussion using Support Vector Machine. Paper presented at the International Conference on Computer Control Information and Its Applications. Estabrooks, A., Jo, T., & Japkowicz, N. (2004). A multiple resampling method for learning from imbalanced data sets. Computational intelligence, 20(1), 18-36. Fan, Q., Wang, Z., & Gao, D. (2016). One-sided Dynamic Undersampling No-Propagation Neural Networks for imbalance problem. Engineering Applications of Artificial Intelligence, 53, 62-73. Färe, R., Grosskopf, S., Lindgren, B., & Roos, P. (1994). Productivity developments in Swedish hospitals: a Malmquist output index approach Data envelopment analysis: Theory, methodology, and applications (pp. 253-272): Springer. Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society. Series A (General), 120(3), 253-290. Geng, R., Bose, I., & Chen, X. (2015). Prediction of financial distress: An empirical study of listed Chinese companies using data mining. European Journal of Operational Research, 241(1), 236-247. Geva, T., & Zahavi, J. (2014). Empirical evaluation of an automated intraday stock recommendation system incorporating both market data and textual news. Decision Support Systems, 57, 212-223. Gombola, M. J., & Ketz, J. E. (1983). Financial ratio patterns in retail and manufacturing organizations. Financial Management, 45-56. Gong, X., Si, Y.-W., Fong, S., & Biuk-Aghai, R. P. (2016). Financial time series pattern matching with extended UCR Suite and Support Vector Machine. Expert Systems with Applications, 55, 284-296. Graesser, A. C., McNamara, D. S., Louwerse, M. M., & Cai, Z. (2004). Coh-Metrix: Analysis of text on cohesion and language. Behavior Research Methods, 36(2), 193-202. Guo, H., & Viktor, H. L. (2004). Learning from imbalanced data sets with boosting and data generation: the databoost-im approach. ACM Sigkdd Explorations Newsletter, 6(1), 30-39. Gupta, V., & Lehal, G. S. (2009). A survey of text mining techniques and applications. Journal of emerging technologies in web intelligence, 1(1), 60-76. Hajek, P., & Henriques, R. (2017). Mining corporate annual reports for intelligent detection of financial statement fraud–A comparative study of machine learning methods. Knowledge-Based Systems, 128, 139-152. Heath, R. L., & Phelps, G. (1984). Annual reports II: Readability of reports vs. business press. Public Relations Review, 10(2), 56-62. Heiberger, R. H. (2017). Predicting economic growth with stock networks. Physica A: Statistical Mechanics and its Applications. doi:https://doi.org/10.1016/j.physa.2017.07.022 Henson, R. K., & Roberts, J. K. (2006). Use of exploratory factor analysis in published research: Common errors and some comment on improved practice. Educational and Psychological measurement, 66(3), 393-416. Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression (Vol. 398): John Wiley & Sons. Jabeur, S. B. (2017). Bankruptcy prediction using Partial Least Squares Logistic Regression. Journal of Retailing and Consumer Services, 36, 197-202. Jo, T., & Japkowicz, N. (2004). Class imbalances versus small disjuncts. ACM Sigkdd Explorations Newsletter, 6(1), 40-49. Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36. Kamei, Y., Monden, A., Matsumoto, S., Kakimoto, T., & Matsumoto, K.-i. (2007). The effects of over and under sampling on fault-prone module detection. Paper presented at the Empirical Software Engineering and Measurement, 2007. ESEM 2007. First International Symposium on. Kamruzzaman, S., & Rahman, C. M. (2010). Text Categorization using Association Rule and Naive Bayes Classifier. arXiv preprint arXiv:1009.4994. Kaplan, R. S., & Norton, D. P. (2005). The balanced scorecard: measures that drive performance: Harvard Business School Publishing. Kevork, I. S., Pange, J., Tzeremes, P., & Tzeremes, N. G. (2017). Estimating Malmquist productivity indexes using probabilistic directional distances: An application to the European banking sector. European Journal of Operational Research, 261(3), 1125-1140. Klare, G. R. (1963). Measurement of readability. Klare, G. R. (2000). The measurement of readability: useful information for communicators. ACM Journal of Computer Documentation (JCD), 24(3), 107-121. Kohavi, R., & Provost, F. (1998). Glossary of terms. Machine learning, 30(2-3), 271-274. Kozan, K., & Richardson, J. C. (2014). New exploratory and confirmatory factor analysis insights into the community of inquiry survey. The Internet and Higher Education, 23, 39-47. Kubat, M., Holte, R. C., & Matwin, S. (1998). Machine learning for the detection of oil spills in satellite radar images. Machine learning, 30(2-3), 195-215. Kubat, M., & Matwin, S. (1997). Addressing the curse of imbalanced training sets: one-sided selection. Paper presented at the ICML. Kumar, B. S., & Ravi, V. (2016). A survey of the applications of text mining in financial domain. Knowledge-Based Systems, 114, 128-147. Kumar, D., Meghwani, S. S., & Thakur, M. (2016). Proximal support vector machine based hybrid prediction models for trend forecasting in financial markets. Journal of Computational Science, 17, 1-13. Lam, M. (2004). Neural network techniques for financial performance prediction: integrating fundamental and technical analysis. Decision Support Systems, 37(4), 567-581. Li, H., & Sun, J. (2011). Empirical research of hybridizing principal component analysis with multivariate discriminant analysis and logistic regression for business failure prediction. Expert Systems with Applications, 38(5), 6244-6253. Liu, C., Li, D., Lu, B., & Xiong, J. (2016). Event Bank based multimedia representation via latent group logistic regression minimization. Neurocomputing, 189, 53-65. Lo, K., Ramos, F., & Rogo, R. (2017). Earnings management and annual report readability. Journal of Accounting and Economics, 63(1), 1-25. Lo, S. (2008). Web service quality control based on text mining using support vector machine. Expert Systems with Applications, 34(1), 603-610. Lovett, S., Zeiss, A. M., & Heinemann, G. D. (2002). Assessment and development: Now and in the future. Team Performance in Health Care, 385-400. Lu, W., Li, Z., & Chu, J. (2017). Adaptive Ensemble Undersampling-Boost: A Novel Learning Framework for Imbalanced Data. Journal of Systems and Software. Luo, P., Chen, K., & Wu, C. (2016). Measuring social influence for firm-level financial performance. Electronic Commerce Research and Applications, 20, 15-29. Ma, Y., Liang, S., Chen, X., & Jia, C. (2016). The Approach to Detect Abnormal Access Behavior Based on Naive Bayes Algorithm. Paper presented at the Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2016 10th International Conference on. Majors, M. S., & Sedlacek, W. E. (2001). Using factor analysis to organize student services. Journal of College Student Development, 42(3), 272. Malmquist, S. (1953). Index numbers and indifference surfaces. Trabajos de estadística, 4(2), 209-242. Manhenke, C., Ørn, S., Von Haehling, S., Wollert, K. C., Ueland, T., Aukrust, P., . . . Anker, S. D. (2013). Clustering of 37 circulating biomarkers by exploratory factor analysis in patients following complicated acute myocardial infarction. International journal of cardiology, 166(3), 729-735. Mc Laughlin, G. H. (1969). SMOG grading-a new readability formula. Journal of reading, 12(8), 639-646. McNamara, D. S., Louwerse, M. M., & Graesser, A. C. (2002). Coh-Metrix: Automated cohesion and coherence scores to predict text readability and facilitate comprehension. Retrieved from McNamara, D. S., Louwerse, M. M., McCarthy, P. M., & Graesser, A. C. (2010). Coh-Metrix: Capturing linguistic features of cohesion. Discourse Processes, 47(4), 292-330. Menard, S. (2002). Applied logistic regression analysis (Vol. 106): Sage. Mironiuc, M., & Robu, M.-A. (2013). Obtaining a practical model for estimating stock performance on an emerging market using logistic regression analysis. Procedia-Social and Behavioral Sciences, 81, 422-427. Molinos-Senante, M., Hernández-Sancho, F., & Sala-Garrido, R. (2015). Comparing the dynamic performance of wastewater treatment systems: A metafrontier Malmquist productivity index approach. Journal of environmental management, 161, 309-316. Mooney, R. J., & Bunescu, R. (2005). Mining knowledge from text using information extraction. ACM Sigkdd Explorations Newsletter, 7(1), 3-10. Moreno-Ortiz, A., & Fernández-Cruz, J. (2015). Identifying polarity in financial texts for sentiment analysis: a corpus-based approach. Procedia-Social and Behavioral Sciences, 198, 330-338. Nishimizu, M., & Page, J. M. (1982). Total factor productivity growth, technological progress and technical efficiency change: dimensions of productivity change in Yugoslavia, 1965-78. The Economic Journal, 92(368), 920-936. Park, K., & Kremer, G. E. O. (2017). Text mining-based categorization and user perspective analysis of environmental sustainability indicators for manufacturing and service systems. Ecological Indicators, 72, 803-820. Pelayo, L., & Dick, S. (2007). Applying novel resampling strategies to software defect prediction. Paper presented at the Fuzzy Information Processing Society, 2007. NAFIPS''07. Annual Meeting of the North American. Quinlan, J. (1993). C4. 5: Programs for Machine Learning Morgan Kaufmann San Mateo. CA Google Scholar. Ramesh, B., & Sathiaseelan, J. (2015). An advanced multi class instance selection based support vector machine for text classification. Procedia Computer Science, 57, 1124-1130. Ravisankar, P., Ravi, V., & Bose, I. (2010). Failure prediction of dotcom companies using neural network–genetic programming hybrids. Information Sciences, 180(8), 1257-1267. Rivera, S. J., Minsker, B. S., Work, D. B., & Roth, D. (2014). A text mining framework for advancing sustainability indicators. Environmental modelling & software, 62, 128-138. Schumaker, R. P., & Chen, H. (2009). Textual analysis of stock market prediction using breaking financial news: The AZFin text system. ACM Transactions on Information Systems (TOIS), 27(2), 12. Settouti, N., Bechar, M. E. A., & Chikh, M. A. (2016). Statistical comparisons of the top 10 algorithms in data mining for classification task. Int. J. Interact. Multimedia Artif. Intell., Special Issue Artif. Intell. Underpinning, 4, 46-51. Shirakawa, M., Nakayama, K., Hara, T., & Nishio, S. (2015). Wikipedia-based semantic similarity measurements for noisy short texts using extended naive bayes. IEEE Transactions on Emerging Topics in Computing, 3(2), 205-219. Sun, A., Lim, E.-P., & Liu, Y. (2009). On strategies for imbalanced text classification using SVM: A comparative study. Decision Support Systems, 48(1), 191-201. Sun, J., & Hui, X.-f. (2006). An application of decision tree and genetic algorithms for financial ratios'' dynamic selection and financial distress prediction. Paper presented at the Machine Learning and Cybernetics, 2006 International Conference on. Sun, L., & Shenoy, P. P. (2007). Using Bayesian networks for bankruptcy prediction: Some methodological issues. European Journal of Operational Research, 180(2), 738-753. Tang, B., He, H., Baggenstoss, P. M., & Kay, S. (2016). A Bayesian classification approach using class-specific features for text categorization. IEEE Transactions on Knowledge and Data Engineering, 28(6), 1602-1606. Tehrani, A. F., & Ahrens, D. (2016). Enhanced predictive models for purchasing in the fashion field by using kernel machine regression equipped with ordinal logistic regression. Journal of Retailing and Consumer Services, 32, 131-138. Tetlock, P. C., Saar‐Tsechansky, M., & Macskassy, S. (2008). More than words: Quantifying language to measure firms'' fundamentals. The Journal of Finance, 63(3), 1437-1467. Thorleuchter, D., & Van Den Poel, D. (2012). Predicting e-commerce company success by mining the text of its publicly-accessible website. Expert Systems with Applications, 39(17), 13026-13034. Timmer, C. P. (1970). On measuring technical efficiency. Food Research Institute Studies. Stanford University, 9(2), 99-171. Timmer, C. P. (1971). Using a probabilistic frontier production function to measure technical efficiency. journal of Political Economy, 79(4), 776-794. Tomek, I. (1976). Two modifications of CNN. IEEE Trans. Systems, Man and Cybernetics, 6, 769-772. Tseng, F.-M., Chiu, Y.-J., & Chen, J.-S. (2009). Measuring business performance in the high-tech manufacturing industry: A case study of Taiwan''s large-sized TFT-LCD panel companies. Omega, 37(3), 686-697. Turhan, B., & Bener, A. (2009). Analysis of Naive Bayes’ assumptions on software fault data: An empirical study. Data & Knowledge Engineering, 68(2), 278-290. Van Den Broek, P., & Kremer, K. E. (2000). The mind in action: What it means to comprehend during reading. Reading for meaning: Fostering comprehension in the middle grades, 1-31. Vapnik, V. N., & Vapnik, V. (1998). Statistical learning theory (Vol. 1): Wiley New York. Vitello, G., Sorbello, F., Migliore, G., Conti, V., & Vitabile, S. (2014). A Novel Technique for Fingerprint Classification based on Fuzzy C-Means and Naive Bayes Classifier. Paper presented at the Complex, Intelligent and Software Intensive Systems (CISIS), 2014 Eighth International Conference on. Wang, B., Huang, H., & Wang, X. (2012). A novel text mining approach to financial time series forecasting. Neurocomputing, 83, 136-145. Wang, H., Jiang, Y., & Wang, H. (2009). Stock return prediction based on Bagging-decision tree. Paper presented at the Grey Systems and Intelligent Services, 2009. GSIS 2009. IEEE International Conference on. Wilson, D. L. (1972). Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems, Man, and Cybernetics, 2(3), 408-421. Wilson, D. R., & Martinez, T. R. (2000). Reduction techniques for instance-based learning algorithms. Machine learning, 38(3), 257-286. Wong, W. P., & Wong, K. Y. (2007). Supply chain performance measurement system using DEA modeling. Industrial Management & Data Systems, 107(3), 361-381. Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., . . . Philip, S. Y. (2008). Top 10 algorithms in data mining. Knowledge and information systems, 14(1), 1-37. Youn, H., & Gu, Z. (2010). Predicting Korean lodging firm failures: An artificial neural network model along with a logistic regression model. International Journal of Hospitality Management, 29(1), 120-127. Zhang, L., Jiang, L., & Li, C. (2016). A new feature selection approach to naive Bayes text classifiers. International Journal of Pattern Recognition and Artificial Intelligence, 30(02), 1650003. Zhang, Z., Ye, Q., Zhang, Z., & Li, Y. (2011). Sentiment classification of Internet restaurant reviews written in Cantonese. Expert Systems with Applications, 38(6), 7674-7682. Zhao, X. M., Li, X., Chen, L., & Aihara, K. (2008). Protein classification with imbalanced data. Proteins: Structure, function, and bioinformatics, 70(4), 1125-1132. Zhong, W., Yuan, W., Li, S. X., & Huang, Z. (2011). The performance evaluation of regional R&D investments in China: An application of DEA based on the first official China economic census data. Omega, 39(4), 447-455.
|