跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/19 21:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:湯智逸
研究生(外文):Chih-Yi Tang
論文名稱:高靈敏度彎曲平板波癌胚抗原生物感測元件之研發
論文名稱(外文):Development of a High-sensitivity Flexural Plate-wave Based Biosensor for Carcinoembryonic Antigen Detection
指導教授:黃義佑
指導教授(外文):I-yu Huang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:73
中文關鍵詞:插入損耗自我組裝單分子層彎曲平板波體型微加工技術癌胚抗原生物感測器
外文關鍵詞:CEA-biosensorsBulk MicromachiningSelf-Assembled MonolayersSAMsflexural plate-waveInsertion Loss
相關次數:
  • 被引用被引用:8
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
根據國際癌症研究署(International Agency for Research on Cancer, IARC)在2014年世界癌症報告中指出,罹患大腸癌死亡人數從2008年的123萬人攀升到2012年的140萬人,逐年攀升,且為國人十大癌症死因之第三名。癌胚抗原(Carcinoembryonic antigen, CEA)是常見的腫瘤標記之一,主要經由腫瘤細胞所分泌並釋放至血液中,所以當腫瘤細胞形成時,癌胚抗原在血液中之濃度則會增加,目前癌胚抗原在臨床上主要用於大腸癌術後追蹤檢測。然而傳統癌胚抗原檢測儀器體積龐大、造價昂貴且檢測時間長,僅能在大型醫療中心使用,因此為了有效且快速檢測大腸癌發生機率以提早治療,本論文將開發可應用於大腸癌檢測之癌胚抗原彎曲平板波(Flexural Plate-wave, FPW)生物感測器。
本論文運用微機電系統技術製作彎曲平板波生物感測元件,製程步驟包含了七次薄膜沉積與五次黃光微影蝕刻,其中為了能精準控制彎曲平板波元件感測薄膜的厚度並改善製程良率,本論文採用兩階段非等向性濕式蝕刻來進行背面矽腔體之製作。完成之彎曲平板波元件透過胱胺酸自我組裝單分子層(Self-Assembled Monolayers, SAMs)技術將癌胚抗原之抗體鍵結於彎曲平板波感測區,以完成癌胚抗原彎曲平板波生物感測器之開發。
根據網路分析儀量測結果顯示,本論文之彎曲平板波元件具有低插入損耗(-38.652 dB)、高質量感測靈敏度(126.67 cm2/g)、較小之元件尺寸(0.7×0.84 cm2)、較薄之平板厚度(20 μm);另一方面,癌胚抗原彎曲平板波生物感測器於五種不同濃度之癌胚抗原(5、10、20、40、80 ng/ml)下進行量測,其生物偵測極限為5 ng/ml、生物感測線性度R-square為0.96,綜合上述之結果,本論文所開發之高靈敏度聚焦式圓形彎曲平板波癌胚抗原生物感測器具有極高之研究進步性與商業化潛力。
According to the World Cancer Report 2014 by the International Agency for Research on Cancer (IARC), the global number of cases of colorectal cancer increased from 1.23 million in 2008 to 1.4 million in 2012. The colorectal cancer has also become the third major cancer killer in Taiwan. Carcinoembryonic Antigen (CEA) is a common tumor markers, which is secreted and released into the blood by the tumor cells. When the tumor cells form, the concentration of CEA will also increase in the blood. Currently, the main purpose of CEA in clinical is to keep tracking and detecting of colorectal cancer. However, the traditional CEA detectors usually have disadvantages of huge size, high cost, long detection time, etc. In order to detect colorectal cancer rapidly, a flexural plate-wave (FPW) biosensor for detecting CEA is developed in this thesis.
A FPW transducer was fabricated using micro-electro-mechanical systems (MEMS) technologies. The main fabrication steps of the proposed FPW devices include seven thin-film depositions and five photolithography processes. To accurately control the thickness of the silicon thin-plate and substantially improve the fabrication yield of FPW transducers, a two-step anisotropic wet etching process was also developed. Furthermore, by using cystamine-based self-assembled monolayer (SAM) nanotechnology, we used the proposed FPW device to develop a novel FPW-based carcinoembryonic antigen (CEA) biosensor for detection of colorectal cancer.
The implemented FPW device with dimension only about 0.56×0.56 cm2 and the thickness of suspended silicon plate can be accurately controlled to 20 μm. Under the optimized conditions, a very low insertion loss (-38.652 dB), very high mass sensitivity (126.67 cm2 /g) and high fabrication yield (60.78%) can be obtained. Furthermore, the proposed FPW based CEA-biosensor demonstrated a very low detection limit (5 ng/mL) and high mass-sensing linearity (0.96).
論文審定書 i
誌謝 iii
摘要 iv
Abstract v
目錄 vii
圖目錄 x
表目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與論文架構 2
1.3 文獻回顧 4
1.3.1 生物感測器簡介與分類 4
1.3.2 聲波感測器種類與比較 7
第二章 FPW元件材料分析與理論 15
2.1 壓電效應簡介與壓電薄膜選擇 15
2.1.1 壓電效應 15
2.1.2 氧化鋅壓電薄膜晶格結構與特性 16
2.2 氧化鋅壓電薄膜沉積方法與特性分析 18
2.2.1 氧化鋅壓電薄膜沉積方法 18
2.2.2 氧化鋅壓電薄膜沉積原理 19
2.2.3 反應性射頻電漿磁控濺鍍原理 20
2.3 FPW質量感測之理論推導 21
2.4 金屬指叉轉換器之等效電路分析 22
2.5 反射閘極結構理論 23
2.5.1 反射閘極週期 24
2.5.2 反射閘極對數之原理 25
2.5.3 反射閘極與IDT之間距離之關係 25
2.6單層分子薄膜技術 26
2.6.1 單分子層之製作 26
2.6.2 胱胺酸-戊二醛鍵結法 27
第三章 聚焦式圓形IDT設計之FPW元件設計與製作 29
3.1 聚焦式圓形IDT設計之FPW元件光罩佈局設計 29
3.2 聚焦式圓形IDT設計之FPW元件製作 35
3.3 生物感測材料與步驟 40
第四章 實驗結果與討論 44
4.1 氧化鋅壓電薄膜之材料特性 44
4.2 FPW元件特性量測結果與分析 46
4.2.1 FPW元件量測與平台簡介 46
4.2.2 ..矽基板之KOH蝕刻時間與FPW元件中心頻率的關係 47
4.2.3 .聚焦式圓形反射閘極結構對數與FPW元件特性之影響 50
4.2.4 ..聚焦式圓形IDT結構對數對FPW元件特性之影響 50
4.3 FPW元件固態質量感測器結果與分析 52
4.4 FPW元件生物感測器結果與分析 53
第五章 總結與未來展望 55
5.1 總結 55
5.2 未來展望 56
參考文獻 57
[1]IARC launches the definitive cancer statistics resource. Available online: http://www. iarc.fr/en/media-centre/pr/2010/pdfs/pr201_E.pdf (accessed on 1 June 2010).
[2]Latest world cancer statistics Global cancer burden rises to 14.1 million new cases in 2012. Available online :http://www.iarc.fr/en/media-centre/pr/2013/pdfs/pr223_E.pdf (accessed on 12 December 2013).
[3]微機電系統技術與應用,行政院國家科學委員會精密儀器發展中心,2003。
[4]高士軒、翁文慧,臨床醫療生物感測器發展及技術應用,國立台北科技大學化學工程與生物科技系及生化與生醫工程所,化工專欄,61卷第五期,pp.70-72, 2014。
[5]O. Tigli and M. E. Zaghloul, “Design, modeling, and characterization of a novel circular surface acoustic wave device,” IEEE Sens. J. 8, pp.1807-1815 (2008).
[6]O. Tigli and M. E. Zaghloul, “A novel circular SAW (surface acoustic wave) device in CMOS,” IEEE Sens. Conf., Atlanta, Georgia, USA, pp.474-477 (2007).
[7]M. S. Belluzo, M. E. Ribone and C. M. Lagier, “Assembling amperometric biosensors for clinical diagnostics,” Sensors 8, pp.1366-1370 (2008).
[8]P. Bergveld, “Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen 10 the next 30 years,” Sens. Act. B: Chem. 88, pp.1-20 (2003).
[9]V. K. Gupta, M. L. Yola, T. Eren and N. Atar, “Selective QCM sensor based on atrazine imprinted polymer: Its application to wastewater sample,” Sens. Actuator B: Chem. 218, pp.215-221 (2015).
[10]余聲宏,光纖漸逝波感測器應用於微量聲物分子檢測,醫學工程研究所碩士論文,國立陽明大學,2004。
[11]M. J. Velekoop, “Acoustic wave sensors and their technology,” Ultrasonics 36, pp7-14 (1998).
[12]M. E. Motamedi and R. M. White, “Acoustic Sensor in Semiconductor Sensor,” John Wiely & Sons, Inc., New York, USA (1994).
[13]R. W. Cernosek, “An overview of acoustic wave devices for chemical & biological sensing, biological detection, and materials characterization,” Solid-State Sensor Lecture, Auburn University, Auburn, AL (2002).
[14]D. W. Galipeau, P. R. Story, K. A. Vetelino and R. D. Mileham, “Surface acoustic wave microsensors and applications,” Smart Materials and Structures 6, pp.658-667 (1997).
[15]J. W. Gardner, V. K. Varadan and O. O. Awadelkarim, “Microsensors MEMS and smart devices,” John Wiely & Sons, Inc., New York, USA (2001).
[16]余嘉銘,壓電彎曲平板波生物感測器,國立中正大學電機工程研究所碩士論文, 2003。
[17]I.-Y. Huang and M.-C. Lee, “Development of a FPW allergy biosensor for human IgE detection by MEMS and cystamine-based SAM technologies,” Sens. Act. B: Chem. 132, pp.340-348 (2008).
[18]I.-Y. Huang, M.-C. Lee, C.-H Hsu and C.-C. Wang, “Development of a flexural plate-wave (FPW) immunoglobulin-E (IgE) allergy bio-sensing microsystem,” Sens. Act. B: Chem. 162, pp.184-192 (2012).
[19]D. S. Ballantine and D. Stephen, “Acoustic wave sensor: theory, design, and physico-chemical applications,” Academic Press, Inc., San Diego, USA (1997).
[20]M.-I. Rocha-Gaso, C. March-Iborra, A. Montoya-Baides, and A. Arnau-Vives, “Surface generated acoustic wave biosensors for the detection of pathogens,” Sensors 9, pp.5740-5769 (2009).
[21]Q. X. Su, P. Kirby, E. Komuro, M. Imura, Q. Zhang, and R. Whatmore, “Thin film bulk acoustic resonators and filters using ZnO and lead-zirconium-titanate thin films,” IEEE Trans. Microw. Theory Tech. 49, pp.769-778 (2001).
[22]S. J. Kang, Y. H. Joung, D. H. Chang, and K. W. Kim, “Piezoelectric and optical properties of ZnO thin films deposited using various O2/(Ar+O2) gas ratios,” J. Mater. Sci:Mater. Electron. 18, pp.647-653 (2007).
[23]魏中聖、蕭俊卿、沈弘俊,射頻濺鍍功率對氧化鋅薄膜機械性質之影響,國立台灣大學奈米機電中心,二十卷第一期,2007。
[24]A. Ismail and M. J. Abdullah, “The structural and optical properties of ZnO thin films prepared at different RF sputtering power,” J. King Saud University-Sci. 25, pp.209-215 (2013).
[25]歐天凡,沉積條件對氮化鋁薄膜壓電係數及機電耦合係數之影響,國立中山大學電機工程研究所碩士論文,2004。
[26]Hong Xiao原著,羅正忠、張鼎張譯,半導體製程技術導論,培生教育出版股份有限公司
[27]W. R. Smith, H. M. Gerard, J. H. Collins, T. M. Reeder and H. J. Shaw, “Analysis of interdigital surface wave transducers by use of equivalent circuit model,” IEEE Trans Microw. Theory Tech. 17, pp.856-864(1969).
[28]S. G. Joshi, B. D. Zaitsev and I. E. Kuznetsova, “Reflection of plate acoustic waves produced by a periodic array of mechanical load strips or grooves,” IEEE Trans. Ultras. Ferr. Freq. Contr. 49, pp.1730-1734 (2000).
[29]C.-Y Lin, I.-Y. Huang and J.-W. Lan, “Improvement of insertion loss and quality factor of flexural plate-wave based alpha-fetoprotein biosensor using groove-type reflective grating structures,” J. Micro/Nanolith. MEMS MOEMS 12, pp. 013017-1~8 (2013).
[30]I.-Y. Huang, C.-Y. Lin and J.-W. Lan, “Improving thin film ZnO SAW device insertion loss by grooved reflective grating structure,” J. Micro/Nanolith. MEMS MOEMS 12, pp. 013019-1~9 (2013).
[31]林俊甫,雙埠表面聲波濾波器的模擬與量測,國立成功大學機械工程學研究所碩士論文,2003。
[32]W. H. Haydl, B. Dischler and P. Hiesinger, “Multimode SAW resonators-a method to study the optimum resonator design,” Proc. IEEE Ultrason. Symp., Annapolis, MD, USA, pp.287-296 (1976).
[33]陳姿吟、李連忠,以化學氣相沉積法成長大面積支石墨烯,中央研究院週報,第1342期,pp. 5-6,2011。
[34]黃千玲,含辛烷硫之叄吡啶釕金屬錯合物自組吸附於金電極與金簇上之研究,國立中山大學化學研究所碩士論文,2016。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top