|
[1]M. I. Skolnik, Introduction to Radar System, 3rd ed. New York: McGraw-Hill, 2001. [2]M. I. Skolnik, Radar Handbook, 3rd ed. New York: McGraw-Hill, 2008 [3]D. K. Barton, Radar System Analysis and Modeling, MI: Artech House, 2005. [4]K. M. Chen, D. Misra, H. Wang, H. R. Chuang, and E. Postow, “An X-band microwave life-detection system,” IEEE Trans. Biomed. Eng., vol. BME-33, no. 7, pp. 697-701, Jul. 1986 [5]J. C. Lin, “Microwave sensing of physiological movement and volume change: a review,” Bioelectromagnetics, vol. 13, pp. 557-565, Apr. 1992. [6]K. M. Chen, Y. Huang, J. Shang, and A. Norman, “Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier,” IEEE Trans. Biomed. Eng., vol. 27, pp. 105–114, Jan. 2000. [7]A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A. Kovac, “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 838-848, Mar. 2004. [8]C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2046-2060, May 2013. [9]C. Li (2013, Feb.). Smart radar sensor for accurate tumor tracking in motion adaptive cancer radiotherapy. IEEE lifesciences. [Online]. Available: http://goo.gl/2OU2qb [10]M. I. Skolnik, “The nature of radar,” in Introduction to Radar System, 3rd ed. New York: McGraw-Hill, 2001, pp. 1–14. [11]C. Li and J. Lin, “Recent advances in Doppler radar sensors for pervasive healthcare monitoring,” in Proc. Asia-Pacific Microwave. Conf., Dec. 2010, pp. 283–290. [12]R. J. Fontana, “Recent system applications of short-pulse ultra-wideband (UWB) technology,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 9, pp. 2087–2104, Sep. 2004. [13]Z. Li, W. Li, H. Lv, Y. Zhang, X. Jing, and J. Wang, “A novel method for respiration-like clutter cancellation in life detection by dual-frequency IR-UWB radar,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2086–2092, May 2013. [14]E. C. Fear, J. Bourqui, C. Curtis, D. Mew, B. Docktor, and C. Romano, “Microwave breast imaging with a monostatic radar-based system: a study of application to patents,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2119–2128, May 2013. [15]C. Zhang, M. J. Kuhn, B. C. Merkl, A. E. Fathy, and M. R. Mahfouz, “Real-time noncoherent UWB positioning radar with millimeter range accuracy: theory and experiment,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 1, pp. 9–20, Jan. 2010. [16]Y. Wang, Q. Liu, and A. E. Fathy, “CW and pulse-Doppler radar processing based on FPGA for human sensing applications,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 3097–4007, May 2013. [17]B. Schleicher, I. Nasr, A. Trasser, and H. Schumacher, “IR-UWB radar demonstrator for ultra-fine movement detection and vital-sign monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2076–2085, May 2013. [18]D. Zito, D. Pepe, M. Mincica, F. Zito, A. Tognetti, A. Lanatà, and D. D. Rossi, “SoC CMOS UWB pulse radar sensor for contactless respiratory rate monitoring,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 6, pp. 503-510, Dec. 2011. [19]H. G. Han, B. G. Yu, and T. W. Kim, “A 1.9mm-precision 20GS/s real-times sampling receiver using time-extension method for indoor localization,” in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2015, pp. 352–354. [20]N. Anderson, K. Granhaug, J. A. Michaelsen, S. Bagga, H. A. Hjortland, M. R. Knutsen, T. S. Lande, and D. T. Wisland, “A 118mW 23.3GS/s dual-band 7.3GHz and 8.7GHz impulse-based direct RF sampling radar SoC in 55nm CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2017, pp. 138–140. [21]T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” in IEEE Int. Phased Array Systems and Technology Symp. Dig., Waltham, MA, Oct. 2010, pp. 551-558. [22]T. Mitomo, N. Ono, H. Hoshino, Y. Yoshihara, O. Watanabe, and I. Seto, “A 77 GHz CMOS transceiver for FMCW radar applications,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 928-937, Apr. 2010. [23]H. J.alli Ng, A. Fischer, R. Ferger, R. Stuhlberger, L. Maurer, and A. Stelzer, “A DLL-supported, low phase noise fractional-N PLL with a wideband VCO and a high linear frequency ramp generator for FMCW radars,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 12, pp. 3289-3302, Dec. 2013. [24]J. Park, H. Ryu, K.-W. Ha, J.-G. Kim, and D. Baek, “76-81 Ghz CMOS transmitter with a phase-locked-loop-based multichirp modulator for automotive radar,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1399-1408, Apr. 2015. [25]A. G. Stove, “Linear FMCW radar techniques,” IEE Proc. F, Radar Signal Process., vol. 139, no. 5, pp. 343-350, Oct. 1992. [26]C. Li,V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2046–2060, May 2013. [27]D. T. Perkie, C. Benton, nad E. Bryan, “Millimeter wave radar for remote measurement of vital signs,” in Proc. IEEE Radar Conf., May 2009, pp. 1–3. [28]C. Li, Y. Xiao, and J. Lin, “Experiment and spectral analysis of a low-power Ka-band heart detector measuring from four sides of a human body,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 12, pp. 4464–4471, Dec. 2006. [29]T.-Y. J. Kao, Y. Yan, T.-M. Shen, A. Y.-K. Chen, and J. Lin, “Design and analysis of a 60 –GHz CMOS Doppler micro-radar system-in-package for vital-sign and vibration detection” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1649–1659, Apr. 2013. [30]C. Gu, Z. Peng, and C. Li, “High-precision motion detection using low-complexity Doppler radar with digital post-distortion technique,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 3, pp. 961–971, Mar. 2016. [31]W. Xu, C. Gu, C. Li, and M. Sarrafzadeh, “Robust Doppler radar demodulation via compressed sensing,” IEEE Electron. Lett., vol. 48, no. 22, pp. 1428–1430, Oct. 2012. [32]S. Guan, J. A. Rice, C. Li, and C. Gu, “Automated DC offset calibration strategy for structural health monitoring based on portable CW radar sensor,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 3111–3118, Dec. 2014. [33]H. Zhao, H. Hong, L. Sun, F. Xi, C. Li, and X. Zhu, “Accurate DC offset calibration of Doppler radar via non-convex optimization,” IEEE Electron. Lett., vol. 51, no. 16, pp. 1282–1284, Aug. 2015. [34]W. D. Boyer, “A diplex, Doppler phase comparison radar,” IEEE Trans. Aerosp. Navig. Electron., vol. ANE-10, no. 1, pp. 27–33, Mar. 1963. [35]F. Ahmad, M. G. Amin, and P. D. Zemany, “Dual-frequency radars for target localization in urban sensing,” IEEE Trans. Aerosp. Navig. Electron., vol. 45, no. 4, pp. 1598–1609, Oct. 2009. [36]T. Fan, C. Ma, Z. Gu, Q. Lv, J. Chen, D. Ye, J. Huangfu, Y. Sun, C. Li, and L. Ran, “Wireless hand gesture recognition based on continuous-wave Doppler radar sensors,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 11, pp. 4012–4120, Nov. 2016. [37]U. R. Archarya, K. P. Joseph, N. Kannathal, C. M. Lim, and J. S. Suri, “Heart rate variability: A review,” Med. Biol. Eng. Comput., vol. 44, no. 12, pp. 1031-1051, Dec. 2006. [38]J. F. Thayer, S. S. Yamamoto, and J. F. Brosschot, “The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors,” Int. J. Cardiol., vol. 141, no. 2, pp. 122-131, Nov. 2010. [39]J. M. Gorman and R. P. Sloan, “Heart rate variability in depressive and anxiety disorders,” Am. Heart J., vol. 140, no. 4, pp. S77-S83, Oct. 2000. [40]A. E. Abbert, B. Seps, and F. Beckers, “Heart rate variability in athletes,” Sports Med., vol. 33, no. 12, pp. 889-919, Oct. 2003. [41]S. C. Mukhopadhyay, “Wearable sensors for human activity monitoring: A review,” IEEE Sens. J., vol. 15, no. 3, pp. 1321-1330, Dec. 2014. [42]D. K. Shaeffer, ”MEMS inertial sensors: a tutorial overview,” IEEE Commun.Mag., vol. 51, no. 4, pp.100-109, Apr. 2013. [43]S. Kwon, J. Lee, G. S. Chung, and K. S. Park, “Validation of heart rate extraction through an iPhone accelerometer,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Boston, MA, Sep. 2011, pp. 5260-5263. [44]T. Ikari, S. Kurose, T. Igasaki, and M. Kobayashi, “Pulse monitoring by Sol-Gel composite flexible piezoelectric sensors,” in Proc. IEEE Int. Ultrasonics Symp., Chicago, IL, Sep. 2014, pp. 2071-2074. [45]J. G. Webster, Medical Instrumentation Application and Design, 4th ed.; Wiley: Hoboken, NJ, USA, 2009; pp. 147–157. [46]Y. M. Chi, T.-P. Jung, and G. Cauwenberghs, ”Dry-contact and noncontact biopotential electrodes: methodological review,” IEEE Rev. Biomed. Eng., vol. 3, pp.106-119, Oct. 2010. [47]B. Chua, P. Cao, S. P. Desai, M. J. Tierney, J. A. Tamada, and A. N. Jina, ”Sensing contact between microneedle array and epidermis using frequency response measurement,” IEEE SensorsJ., vol. 14, no. 2, pp. 333-340, Feb. 2014. [48]T. I. Oh, S. Yoon, T. E. Kim, H. Wi, K. J. Kim, E. J. Woo, and R. J. Sadleir, ”Nanofiber web textile dry electrodes for long-term biopotential recording,” IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 2, pp. 204-211, Apr. 2013. [49]H.-C. Jung, J.-H. Moon, D.-H. Baek, J.-H. Lee, Y.-Y. Choi, J.-S. Hong, and S.-H. Lee, “CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring,” IEEE Trans. Biomed. Eng., vol. 59, no. 5, pp. 1472-1479, May2012. [50]F. Wang, G. Li, Y. Duan, and D. Zhang, “Novel semi-dry electrodes for brain-computer interface applications,” J. Neural Eng., vol. 13, no. 4, pp. 046021, Jul. 2016. [51]K. Nakajima, T. Tamura, and H. Miike, “Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique,” Med. Eng. Phys., vol. 18, no. 5, pp. 365-372, Jul. 1996. [52]M. H. Sherebrin and R. Z. Sherebrin, ”Frequency Analysis of the Peripheral Pulse Wave Detected in the Finger with a Photoplethysmograph,” IEEE Trans. Biomedical Eng., vol. 37, no. 3, pp.313-317, Mar. 1990. [53]H. Fukushima, H. Kawanaka, M. Bhuiyan, and K. Oguri, “Estimating heart rate using wrist-type photoplethysmography and acceleration sensor while running,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., San Diego, CA, Sep. 2012, pp. 2901-2904. [54]Z. Zhang, Z. Pi, and B. Liu, “TROIKA: A general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise,” IEEE Trans. Biomed. Eng., vol. 62, no. 2, pp. 522-531, Feb. 2015. [55]M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Advancements in noncontact, multiparameter physiological measurements using a webcam,” IEEE Trans. Biomed. Eng., vol. 58, no. 1, pp. 7-11, Jan. 2011. [56]D. J. McDuff, J. R. Estepp, A. M. Piasecki and E. B. Blackford. “A survey of remote optical photoplethysmographic imaging methods,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Milan, Italy, Aug. 2015, pp. 6398-6404. [57]Y. Sun and N. Thakor, “Photoplethysmography revisited: from contact to noncontact, from point to imaging,” IEEE Trans. Biomed. Eng., vol. 63, no. 3, pp. 463-477, Mar. 2016. [58]M. I. Skolnik, Introduction to Radar System, 3rd ed. New York: McGraw-Hill, 2001. [59]A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A. Kovac, “0.25 μm CMOS and BiCMOS single chip direct conversion Doppler radars for remote sensing of vital signs,” in IEEE Int. Solid State Circuits Conf. Dig., San Francisco, CA,Feb. 2002, pp. 348-349. [60]T.-Y. J. Kao, Y. Yan, T.-M. Shen, A. Y.-K. Chen, and J. Lin, “Design and analysis of a 60-GHz CMOS Doppler micro-radar system-in-package for vital-sign and vibration detection,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1649-1659, Apr. 2013. [61]J. Jang, J. Oh, C.-Y. Kim, and S. Hong, “A 79-GHz adaptive-gain and low-noise UWB radar receiver front-end in 65-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 3, pp. 859-867, Feb. 2016. [62]V. Giannini, D. Guermandi, Q. Shi, A. Medra, W. V. Thillo, A. Bourdoux, and P. Wambacq, “A 79 GHz phase-modulated 4 GHz-BW CW radar transmitter in 28 nm CMOS,” IEEE J. Solid-State Circuits., vol. 49, no. 12, pp. 2925-2937, Dec. 2014. [63]A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A. Kovacs, “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 3, pp. 838–848, Mar. 2004. [64]C. Gu, W. Xu, G. Wang, T. Inoue, J. A. Rice, L. Ran, and C. Li, “Noncontact large-scale displacement tracking: Doppler radar for water level gauging,” IEEE Microw. Compon. Lett., vol. 24, no. 12, pp. 899–901, Dec. 2014. [65]H.-D. Lin, Y.-S. Lee, H.-L. Shih, and B.-N. Chuang“A novel non-contact radar sensor for affective and interactive analysis,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Osaka, Japan, Jul. 2013, pp. 4706-4709. [66]B. H. Kim et al., “A Proximity Coupling RF Sensor for Wrist Pulse Detection Based on Injection-Locked PLL,”in IEEE Trans. Microw. Theory Tech., vol. 64, no. 5, pp. 1667-1676, May 2016. [67]F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, J. Lin, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “An injection-locked detector for concurrent spectrum and vital sign sensing,” in IEEE MTT-S Int. Microwave Symp.Dig., Anaheim, CA, May 2010, pp. 768-771. [68]F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “Single-antenna doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3577-3587, Dec. 2011. [69]F.-K. Wang, C.-H. Fang, T.-S. Horng, K.-C. Peng, J.-Y. Li, and C.-C. Chen, “Concurrent vital sign and position sensing of multiple individuals using self-injection-locked tags and injection-locked I/Q receivers with arctangent demodulation,”IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4689–4699, Dec. 2013. [70]G. Shafiq and K. C. Veluvilu, “Surface chest motion decomposition for cardiovascular monitoring,” Scientific Reports, vol. 4, no. 5093, pp. 1–9, May 2014. [71]H. Gheidi and A. Banai, “An ultra-broadband direct demodulator for microwave FM receivers,”IEEE Trans. Microw. Theory Techn., vol. 59, no. 8, pp. 2131–2139, Aug. 2011. [72]S. Guan, J. A. Rice, C. Li, and C. Gu, “Automated DC offset calibration strategy for structural health monitoring based on portable CW radar sensor,”IEEE Trans. Instrum. Meas., vol. 63, no. 12, pp. 3111–3118, Dec. 2014.
|