|
[1]D. L. Olson, Y. Shi, Introduction to business data mining, McGraw-Hill/Irwin Englewood Cliffs, 2007. [2]S. Theodoridis, K. Koutroumbas, Pattern Recognition, Elsevier, 2008. [3]W. Li, L. Jaroszewski, A. Godzik, Clustering of highly homologous sequences to reduce the size of large protein databases, Bioinformatics 17 (3) (2001) 282–183. [4]S.-J. Lee, C.-S. Ouyang, S.-H. Du, A neuro-fuzzy approach for segmentation of human objects in image sequences, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 33 (3) (2003) 420–437. [5]R. Filipovych, S. M. Resnick, C. Davatzikos, Semi-supervised cluster analysis of imaging data, NeuroImage 54 (3) (2011) 2185–2197. [6]J.-Y. Jiang, R.-J. Liou, S.-J. Lee, A fuzzy self-constructing feature clustering algorithm for text classification, IEEE Transactions on Knowledge and Data Engineering 23 (3) (2011) 335–349. [7]R.-F. Xu, S.-J. Lee, Dimensionality reduction by feature clustering for regression problems, Information Sciences 299 (2015) 42–57. [8]M. Wang, Y. Yu, W. Lin, Adaptive neural-based fuzzy inference system approach applied to steering control, Proceedings of International Symposium on Neural Networks (2009) 1189–1196. [9]Y. Xu, V. Olman, D. Xu, Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees, Bioinformatics 18 (4) (2002) 536–545. [10]C.-C. Wei, T.-T. Chen, S.-J. Lee, K-nn based neuro-fuzzy system for time series prediction, Proceedings of 14th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD) (2013) 569–574. [11]F. Can, E. A. Ozkarahan, Concepts and effectiveness of the cover-coefficient- based clustering methodology for text databases, ACM Transactions on Database Systems 15 (4) (1990) 483–517. [12]R. Feldman, J. Sanger, The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data, Cambridge University Press, 2007. [13]S.-J. Lee, J.-Y. Jiang, Multilabel text categorization based on fuzzy relevance clustering, IEEE Transactions on Fuzzy Systems 22 (6) (2014) 1457–1471. [14]C.-L. Liao, S.-J. Lee, A clustering based approach to improving the efficiency of collaborative filtering recommendation, Electronic Commerce Research and Applications 18 (2016) 1–9. [15]F. M. Alvarez, A. Troncoso, J. C. Riquelme, J. S. A. Ruiz, Energy time series forecasting based on pattern sequence similarity, IEEE Transactions on Knowledge and Data Engineering 23 (8) (2011) 1230–1243. [16]Z.-Y. Wang, S.-J. Lee, A neuro-fuzzy based method for TAIEX forecasting, Proceedings of International Conference on Machine Learning and Cybernetics (ICMLC) 1 (2) (2014) 579–584. [17]B. Everitt, Cluster analysis, Chichester, West Sussex, UK: Wiley, 2011. [18]T. Kohonen, Self-Organizing Maps, Springer-Verlag, 1995. [19]K. Alsabti, S. Ranka, V. Singh, An efficient k-means clustering algorithm, Electrical Engineering and Computer Science Paper 43. [20]Z. Huang, Extensions to the k-means algorithm for clustering large data sets with categorical values, Data Mining and Knowledge Discovery 2 (1998) 283–304. [21]S.-J. Lee, C.-S. Ouyang, A neuro-fuzzy system modeling with self-constructing rule generation and hybrid SVD-based learning, IEEE Transactions on Fuzzy Systems 11 (3) (2003) 341–353. [22]H.-S. Park, C.-H. Jun, A simple and fast algorithm for k-medoids clustering, Expert Systems with Applications 36 (2009) 3336–3341. [23]D. Sculley, Web-scale k-means clustering, Proceedings of 19th International Conference on World Wide Web (2010) 1177–1178. [24]A. Kraskov, H. Stogbauer, R. G. Andrzejak, P. Grassberger, Hierarchical clustering based on mutual information, arXiv:q-bio/0311039v2 [q-bio.QM]. [25]G. J. Szekely, M. L. Rizzo, M. L, Hierarchical clustering via joint between-within distances: Extending Ward’s minimum variance method, Journal of Classification 22 (2005) 151–183. [26]E. Achtert, C. Bohm, P. Kroger, DeLi-Clu: Boosting robustness, completeness, usability, and efficiency of hierarchical clustering by a closest pair ranking, Lecture Notes in Computer Science 3918 (2006) 119–128. [27]E. Achtert, C. Bohm, P. Kroger, A. Zimek, Mining hierarchies of correlation clusters, Proceedings of 18th International Conference on Scientific and Statistical Database Management (SSDBM) (2006) 119–128. [28]W. Zhang, D. Zhao, X. Wang, Agglomerative clustering via maximum incremental path integral, Pattern Recognition 46 (11) (2013) 3056–3065. [29]M. Gagolewski, M. Bartoszuk, A. Cena, Genie: A new, fast, and outlier-resistant hierarchical clustering algorithm, Information Sciences 363 (2016) 8–23. [30]A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, Series B 39 (1) (1977) 1–38. [31]J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algoritms, Plenum Press, New York, 1981. [32]M. A. T. Figueiredo, A. K. Jain, Unsupervised learning of finite mixture models, IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (3) (2002) 381–396. [33]K. Pal, J. Keller, J. Bezdek, A possibilistic fuzzy c-means clustering algorithm, IEEE transactions of Fuzzy Systems 13 (4) (2005) 517–530. [34]M. R. Fellows, J. Guo, C. Komusiewicz, R. Niedermeier, J. Uhlmann, Graphbased data clustering with overlaps, Discrete Optimization 8 (1) (2011) 2–17. [35]A. P´erez-Su´arez, J. F. Martinez-Trinidad, J. A. Carrasco-Ochoa, J. E. Medina- Pagola, OClustR: A new graph-based algorithm for overlapping clustering, Neurocomputing 121 (2013) 234–247. [36]S. Baadel, F. Thabtah, J. Lu, Multi-cluster overlapping k-means extension algorithm, Proceedings of International Conference on Machine Learning and Computing, 2015. [37]C. Am´endola, J.-C. Faug`ere, E. Sturmfels, Moment varieties of Gaussian mixtures, Journal of Algebraic Statistics 7 (1) (2016) 14–28. [38]M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large databases with noise, Proceedings of 2nd ACM International Conference on Knowledge Discovery and Data Mining (1996) 226–231. [39]A. Hinneburg, d. Heim, An efficient approach to clustering large multimedia databases with noise, Prodeedings of 4th ACM International Conference on Knowledge Discovery and Data Mining (1998) 58–65. [40]H.-P. Kriegel, P. Kroger, J. Sander, A. Zimek, Density-based clustering, WIREs Data Mining and Knowledge Discovery 1 (3) (2011) 231–240. [41]R. Agrawal, J. Gehrke, D. Gunopoulos, P. Raghavan, Automatic subspace clustering of high dimensional data for data mining applications, Proceedings of ACM International Conference on Management of Data (1998) 94–105. [42]C.-H. Cheng, A. W. Fu, Y. Zhang, Entropy-based subspace clustering for mining numerical data, Proceedings of 5th ACM International Conference on Knowledge Discovery and Data Mining (1999) 84–93. [43]K. Kailing, H.-P. Kriegel, P. Kroger, Density-connected subspace clustering for high-dimensional data, Proceedings of SIAM International Conference on Data Mining (SDM’04) (2004) 246–257. [44]R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, Automatic subspace clustering of high dimensional data, Data Mining and Knowledge Discovery 11 (2005) 5–33. [45]E. Achtert, C. Bohm, H.-P. Kriegel, P. Kroger, I. Muller-Gorman, A. Zimek, Detection and visualization of subspace cluster hierarchies, Lecture Notes in Computer Science 4443 (2007) 152–163. [46]H.-P. Kriege, P. Kroger, A. Zimek, Subspace clustering, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2 (4) (2012) 351–364. [47]B. J. Frey, D. Dueck, Clustering by passing messages between data points, Science 315 (5814) (2007) 972–976. [48]C.-S. Ouyang, W.-J. Lee, S.-J. Lee, A TSK-type neuro-fuzzy network approach to system modeling problems, IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics 35 (4) (2005) 751–767. [49]X. Huang, Y. Ye, L. Xiong, R. Lau, N. Jiang, S. Wang, Time series k-means: A new k-means type smooth subspace clustering for time series data, Information Sciences 367 (2016) 1–13. [50]X. Huang, Y. Ye, H. Guo, Y. Cai, H. Zhang, Y. Li, DSKmeans: a new kmeanstype approach to discriminative subspace clustering, Knowledge-Based Systems 70 (2014) 293–300. [51]A. Asuncion, D. Newman, The UCI machine learning repository. [52]K-means, https://www.mathworks.com/help/stats/kmeans.html. [53]Fuzzy c-means, https://www.mathworks.com/help/fuzzy/fcm.html. [54]Gaussian mixture model, https://en.wikipedia.org/wiki/Mixture model. [55]Matlab, https://www.mathworks.com/products/matlab.html. [56]Gmm source code, http://blog.pluskid.org/?p=39. [57]Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, G. Batista, The UCR time series classification archive.
|