(44.192.10.166) 您好!臺灣時間:2021/03/06 18:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:宋奕融
研究生(外文):Yi-jung Sung
論文名稱:銀合金線冶金分佈及高頻特性之相關性研究與電性/磁性材料之屏蔽效能探討
論文名稱(外文):Correlation Study of Metallurgical Distributions and RF Characteristics of Pd Doped Ag-alloy Wirebonds and Investigation of Shielding Effectiveness for Electric and Magnetic Materials
指導教授:黃立廷
指導教授(外文):Lih-Tyng Hwang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:88
中文關鍵詞:屏蔽效能屏蔽材料冶金分佈RF電阻銀合金線
外文關鍵詞:RF resistanceMetallurgical distributionsshielding materialAg-alloy wireShielding effectiveness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:57
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中第一部分銀合金線的高頻特性會被探討,因為在高頻的量測結果發現了鈀3.5%的比例時會有最低的RF電阻,我們也發現在頻率愈來愈高時,除了原本及膚效應的損失之外還會有其他更多的損耗存在。
我們用了三種分析方式(EPMA、FIB、EDS)去探討為什麼在鈀3.5%比例下會有最低的RF電阻,研究鈀的冶金分佈對高頻(在及膚效應的頻率)特性的影響,也提供了橫截面的Grain Size的分析,給需要低RF電阻和高可靠度的合金線更多的選擇方式。
第二部分是針對磁性材料和電性材料在電磁場屏蔽效能作探討。除了高導磁性之外,也發現如果有高飽和磁通量密度和低矯頑磁力的材料,對於在高頻磁場的屏蔽效能會比較好。也成功運用了兩種不同電路架構(傳輸線、平面天線)在近場的量測下表現趨於一致,對於日後要運用近場量測去探測屏蔽效能提供更多的電路選擇,兩種電路都量測出差不多磁場強度也代表此次的實驗結果是準確的。
In this thesis, high frequency characteristics of Ag alloys, for example, Ag-Au-Pd and Ag-Pd, were studied. Indeed, it was found that Ag alloy wire bonds with 3.5 %wt Pd had the least AC resistance. It indicates the Ag alloy wire bonds with 3.5 %wt had a different Pd distribution from ones of other Pd percentages. We also studied AC resistances at 2 GHz, 4 GHz (the first stage), 8 GHz (the second stage), and 16 GHz (the third stage), and found wirebond had exhibited losses in addition to the conductor’s skin effect related loss.
Moreover, we use several analytical methods to explain why Ag alloy wire bonds with 3.5 %wt Pd had the least AC resistance. This thesis correlates the metallurgical distributions of Pd with the RF characteristics (due to the skin effect) of Pd doped Ag-alloy wire bonds. Analyzing the high frequency characteristics along with metallurgical and reliability assessment of Pd doped Ag-alloys such as cross-sectional micrographs, an optimized Pd doped silver alloy wire bond can be picked.
The second part is a study of S.E. on selected the magnetic and electric materials in the electromagnetic field for shielding effectiveness. In addition to the high permeability, it is found that the material of high saturation magnetic flux density and low coercivity, the shielding effect of magnetic field in the high frequency will be better. And we also success to use two different structures (transmission lines, planar antenna) have the same result in the near field measurement. For the future use of near-field measurement to measure shielding effectiveness providing more options for selecting circuit. The two circuits are have almost the same intensity of the magnetic field on behalf of the experimental results are accurate.
論文審定書..........................................................i
中文摘要...........................................................ii
英文摘要.........................................................iii
圖 次............................................................vii
表 次.............................................................xi
第一章 緒論.........................................................1
1.1 研究背景...................................................1
1.2 研究動機與目的.............................................2
1.3 論文架構...................................................2
第二章 合金線製程、Wirebonds萃取方法與量測儀器介紹..................4
2.1封裝簡介....................................................4
2.2合金線(Alloy Wire)製程........................................8
2.3 Wire Bonds量測方法與參數萃取...............................11
2.3.1 Wire Bonds參數萃取..................................12
2.3.2 萃取R、L和C各參數值................................14
2.4使用儀器介紹...............................................15
2.4.1 EPMA..............................................16
2.4.2 FIB.................................................17
2.4.3 EDS................................................18
第三章 量測過程與結果..............................................20
3.1 RAC的趨勢性..............................................20
3.2 EPMA....................................................23
3.3 FIB.......................................................27
3.4 EDS......................................................29
第四章 電磁屏蔽與屏蔽材料介紹......................................32
4.1 EMC電磁相容介紹.........................................32
4.2 電磁規範簡介..............................................33
4.3 遠場平面波屏蔽原理........................................35
4.4 屏蔽材料原理與介紹........................................37
4.4.1 導磁材料屏蔽原理介紹................................37
4.4.2 屏蔽材料介紹........................................39
4.5 量測技術..................................................43
4.5.1 遠場量測............................................43
4.5.2 近場量測............................................47
第五章 電磁場屏蔽量測結果與討論....................................50
5.1 測試電路..................................................50
5.2 模擬比較..................................................53
5.3 Conduction noise suppression..................................55
5.4 Far-Field Measurement.......................................57
5.5 Near-Field Measurement......................................62
5.5.1 導磁性材料比較:Sendust和Ferrite.......................64
5.5.2 導電性材料:Copper和Aluminum........................69
第六章 結論與未來工作..............................................71
6.1 結論.....................................................71
6.2 未來工作..................................................72
參考文獻...........................................................73
[1]QiJia Chen, A. Pagba, D. Reynoso, S. Thomas, and H. J. Toc, “Cu wire and beyond – Ag wire an alternative to Cu?” 12th EPTC, 2010, pp. 591-596
[2]Liao Jun Kai, Liang Yi Hung, Li Wei Wu, Men Yeh Chiang, Don So Jiang, C.M. Huang, and Yu Po Wang, “Silver alloy wire bonding,” in Proc. 62nd Electronic Components and Technol. Conf. (ECTC), 2012, pp. 1163-1168.
[3]Hai-Young Lee, "Wideband Characterization of a Typical Bonding Wire for Microwave and Millimeter-wave Integrated Circuits," IEEE Trans. on Microwave Theory and Techniques, Vol. 43, No. 1, pp. 63-68, 1995.
[4]Lih-Tyng Hwang, Chang-Yi Feng, and Hui-Chu Chang, “Investigation of high frequency characteristics of Ag-based wirebonds,” ECTC, San Diego, CA, May 26-30, 2015.
[5]Chunjin Hanga et al., “Study of copper free air ball in thermosonic copper ball bonding,” 6th International Conference on Electronic Packaging Technology (ICEPT), 2005, pp. 414-418.
[6]Y. H. Lu Y. W. Wang, B. K. Appelt, Y.-S. Lai, and C. R. Kao, “Growth of CuAl intermetallic compounds in Cu and Cu(Pd) wire bonding,” in Proc. 61th Electronic Components and Technol. Conf. (ECTC), 2011, pp. 1481-1488.
[7]Jun-Der Lee, Hsing-Hua Tsai, and Tung-Han Chuang, “Composite wire of silver-gold-palladium alloy coated with metal thin film and method thereof ,”
US 20130233594 A1.
[8]Lih-Tyng Hwang, Glenn Rinne, and Iwona Turlik, “Analysis of a Multilayered Metal Transmission Line,” IEEE Trans. On CPMT-B, vol. 18, no. 2, May 1995.
[9]K. A. Yoo, C. Uhm, T. J. Kwon, J. S. Cho, and J. T. Moon, “Reliability study of low cost alternative Ag bonding wire with varius bond pad materials,” 11th EPTC, 2009, pp. 851-857.
[10]Low Dk/Df, high thermal reliability material TU-872 LK: http://www.tuc.com.tw/products-detail.php?id=5&lang=tw
[11]C. Schuster, G. Leonhardt, and W. Fichtner, “Electromagnetic Simulation of Bonding Wires and Comparison with Wide Band Measurements,” IEEE Trans. on Advanced Packaging, Vol. 23, No. 1, pp. 69-78, February 2000.
[12]Weiping Jing, Ling Sun, and Haiyan Sun, “Modeling and parameter extraction methods of bond-wires for chip-package co-design,” 7th International Conference on Electronic Packaging Technology (ICEPT), August 2006, pp. 1-3.
[13]D. M. Pozar, Microwave Engineering, 4th ed., Wiley, New York, 2012, Chapter 4, pp. 188-194.
[14]Chi-Hyeon Jeong, Billy Ahn, Coronado Ray, Liu Kai, Ma Phoo Pwint Hlaing, Susan Park, and Gwang Kim, “A study on the electrical characteristics of different wire materials,” International Conference on Materials and Packaging, 2013.
[15]Department of Materials and Optoelectronic Science, National Sun Yat-sen University. http://khvic.nsysu.edu.tw/khvic/JL/69.htm.
[16]Joint Laboratories, National Sun Yat-sen University. http://khvic.nsysu.edu.tw/khvic/jl/76.htm
[17]Department of Materials Science and Engineering, National Taiwan University www.eng.ntu.edu.tw/files/archive/123_8341054d.doc
[18]NSYSU Center For Nano Science & Nano Technology http://www.nano.nsysu.edu.tw/khvic/JL/57.htm
[19]IC封裝技術http://eshare.stust.edu.tw/EshareFile/2011_6/2011_6_923e1fab.ppt

[20]Integrated Service Technology Inc. http://www.istgroup.com/chinese/3_service/03_01_detail.php?MID=90&SID=96
[21]耕興股份有限公司,“ EMC法規及認證介紹”。
[22]台灣電磁產學聯盟,“電磁干擾/相容(EMI/EMC)”。
[23]E M I測試的基本問題
[24]Agilent Technologies,“如何選擇和使用近場探棒進行電磁干擾分析”。
[25]APREL, Inc.,“EM-ISight-4 Electromagnetic Scanning System PDF”
[26]“積體電路電磁干擾的量測” http://www.report.nat.gov.tw/ReportFront/report_download
[27]Frank Leferink, "Fort Lauderdale, Tutorial on EMC Fundamentals: Shielding", IEEE EMC Symposium 2010.
[28]Marcel Dekker, “Magnetic Materials and Their Characteristics,” 2004.
[29]Mark H.KRYDER, “Transformer-and-Inductor-Design-Handbook_Chapter_2”
[30]Mark H.KRYDER, “An Introduction to Magnetic Recording Heads”
[31]TDK coporation, http://www.global.tdk.com/
[32]Laird Tech, https://www.lairdtech.com/
[33]Mohsen Koohestani and Mohsen Golpour, “Compact rectangular slot antenna with a novel coplanar waveguide fed diamond patch for ultra wideband applications,” 2009.
[34]Jingyan Ma, Hanae Aoki, and Masahiro Yamaguchi, “Analysis of Multilayered Co-Zr-Nb Film On-Chip Noise Suppressor as a Function of Resistivity and Permeability,” 2016.
[35]YOSHIDA Shigeyoshi, KONDO Koichi, ONO Hiroshi, “High-Frequency Noise Suppression Using Ferrite-Plated Film,” NEC TECHNICAL JOURNAL Vol.1 NO.5 2006.
[36]S. Muroga, Y. Shimada, Y. Endo, S. Tanaka, M. Yamaguchi, “In-Band Spurious Attenuation in LTE-Class RFIC Chip using a Soft Magnetic Thin Film,” 2013.
[37]Stefano Piersanti, Francesco de Paulis, Antonio Orlandi, “Near-Field Shielding Performances of EMI Noise Suppression Absorbers,” 2017.
[38]Todd H. Hubing, “Shielding,” IEEE EMC Symposium Fundamentals Workshop 2014.
[39]謝昕峯,基於近場量測技術之晶片層級電磁干擾研究,國立中山大學電機工程學系碩士論文,2012
[40]鄧竹亨,複數近場量測系統之實現與應用,國立中山大學通訊工程研究所碩士論文,2013
電子全文 電子全文(網際網路公開日期:20220727)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔