|
[1]M. Fischer, “The 7th edition of the International Technology Roadmap for Photovoltaics (ITRPV) - Current trends and future challenges in c-Si PV,” in Proc. 26th PV Sol. Energy Conf., 2016. [2]T. Dullweber, S. Gatz, H. Hannebauer, T. Falcon, R. Hesse, J. Schmidt, and R. Brendel, “19.4 %-efficient large area rear-passivated screen-printed silicon solar Cells,” Physica Status Solidi, vol. 5, no. 4, pp. 147-149, 2011. [3]D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” J. Appl. Phys., vol. 25, no. 5, pp. 676–676, 1954. [4]J. M. Gee, W. K. Schubert, and P. A. Basore, “Emitter wrap-through solar cell,” in Proc. Rec. 23rd IEEE Photovoltaic Spec. Conf., Louisville, KY, USA, 1993, pp. 265–270. [5]G. Willeke and P. Fath, “The POWER silicon solar cell concept,” in Proc. 12th Eur. Photovoltaic Solar Energy Conf., Amsterdam, The Netherlands, 1994, pp. 766–768. [6]R. N. Hall and T. J. Soltys, “Polka dot solar cell,” in Proc. 14th IEEE Photovoltaic Spec. Conf., San Diego, CA, USA, 1980, pp. 550–553. [7]I. Chambouleyron and Y. Chevalier, “Silicon double solar cell,” in Proc. Photovoltaic Solar Energy Conf., Luxembourg, 1977, pp. 967–976. [8]A. Luque, A. Cuevas, and J. M. Ruiz, “Double-sided n+-p-n+ solar cell for bifacial concentration,” Solar Cells, vol. 2, no. 2, pp. 151–166, 1980. [9]T. S. Boscke, D. Kania, A. Helbig, C. Schollhorn, M. Dupke, P. Sadler, M. Braun, T. Roth, D. Stichtenoth, T. Wutherich, R. Jesswein, D. Fiedler, R. Carl, J. Lossen, A. Grohe, and H.-J. Krokoszinski, “Bifacial n-Type Cells With >20 % Front-Side Efficiency for Industrial Production,” IEEE J. Photovoltaics, vol. 3, no. 2, pp. 674-677, 2013. [10]S. Sepeai, S. L. Cheow, M. Y. Sulaiman, K. Sopian, and S. H. Zaidi, “Fabrication and characterization of Al-BSF bifacial solar cell,” in Proc. 34th IEEE Photovoltaic Spec. Conf., 2013, pp.2664-2668. [11]J.-B. Heng, J. Fu, B. Kong, Y. Chae, W. Wang, Z. Xie, A. Reddy, K. Lam, C. Beitel, C. Liao, C. Erben, Z. Huang, and Z. Xu, “>23 % High-Efficiency Tunnel Oxide Junction Bifacial Solar Cell With Electroplated Cu Gridlines,” IEEE J. Photovoltaics, vol. 5, no. 1, pp. 82-86, 2015. [12]T. Soderstroml, Y. Yaol, R. Grischkel, M. Gragertl, B. Demaurexl, B. Strahm, P. Papet, H. Mehlich, M. Koenig, A. Waltinger, J. Zaho, J. Krause, “Low cost high energy yield solar module lines and its applications,” in Proc. 42th Photovoltaic Spec. Conf., 2015. [13]C. Kranz, B. Wolpensinger, R. Brendel, and T. Dullweber, “Analysis of Local Aluminum Rear Contacts of Bifacial PERC+ Solar Cells,” IEEE J. Photovoltaics, vol. 6, no. 4, pp. 830-836, 2016. [14]T. Dullweber, C. Kranz, R. Peibst, U. Baumann, H. Hannebauer, A. Fulle, S. Steckemetz, T. Weber, M. Kutzer, M. Muller, G. Fischer, P. Palinginis, and H. Neuhaus, “PERC+ : industrial PERC solar cells with rear Al grid enabling bifaciality and reduced Al paste consumption,” in Proc. 31th Eur. PV Sol. Energy Conf., 2015, pp. 1487-1498. [15]S. deWolf, A. Descoeudres, Z. C. Holman, and C. Ballif, “High-efficiency silicon heterojunction solar cells: A review,” Green, vol. 2, no. 1, pp. 7–24, 2012. [16]A. Edler, P. Lill, M. Dahlinger, M. Eberspacher, V. D. Mihailetchi, C. Comparrotto, R. Harney, and R. Kopecek, “Bifacial n-type solar cell with selective boron emitter,” in Proc. 28th Eur. PV Sol. Energy Conf., 2013, pp. 967–970. [17]S. Gall, A. Lanterne, S. Manuel, V. Sanzone, R. Cabal, Y. Veschetti, A. Bettinelli, H. Robin, P. Lefillastre, and C. Gillot, “High efficient industrial N-type technology : From cell to module,” in Proc. 28th Eur. PV Sol. Energy Conf., 2013, pp. 695–698. [18]F. Fertig, J. Greulich, K. Krauß, F. Clement, D. Biro, R. Preu, and S. Rein, “The BOSCO Solar Cell: Simulation and Experiment,” IEEE J. Photovoltaics, vol. 4, no. 5, pp. 1243-1251, 2014. [19]F. Fertig, , K. Krauß, J. Greulich, F. Clement, D. Biro, R. Preu, S. Rein, “The BOSCO Solar Cell: Double-sided Collection and Bifacial Operation,” Energy Procedia, vol. 55, pp. 416-424, 2014. [20]J. Schmidt, A. G. Aberle, and R. Hezel, “Investigation of carrier lifetime instabilities in CZ grown silicon,” in Proc. 26th IEEE Photovoltaic Spec. Conf., 1997, pp. 13–18. [21]G. Coletti, Y. Wu, G. Janssen, J. Loffler, B. B. van Aken, F. Li, Y. Shen, W. Yang, J. Shi, G. Li, Z. Hu, and J. Xiong, “20.3 % MWT Silicon Heterojunction Solar Cell—A Novel Heterojunction Integrated Concept Embedding Low Ag Consumption and High Module Efficiency,” IEEE J. Photovoltaics, vol. 5, no. 1, pp. 55-60, 2014. [22]N. Guillevina, B. J. B. Heurtaulta, B. B. van Akena, I. J. Bennetta, M. J. Jansena, L. Berkevelda, L. J. Geerligsa, A. W. Weebera, J. H. Bultmana, Z. Hu, G. Li, W. Zhao, J. Wang, Z. Wang, Y. Chen, Y. Shen, J. Chen, B. Yu, S. Tian, J. Xiong, “High Efficiency n-Type Metal Wrap through Cells and Modules,” Energy Procedia, vol. 27, pp. 610-616, 2012. [23]S.-Y. Chen, C.-P. Huang, B.-C. Chen, D.-C. Wu, W.-C. Hsu, and C.-H. Du, “New printing pattern design and processing of MWT solar cells for pilot-line,” in Proc. 35th IEEE Photovoltaic Spec. Conf., 2010, pp. 3498-3500. [24]D. D. Smith, “Review of Back Contact Silicon Solar Cells for Low-Cost Application,” in Proc. 16th Eur. PV Sol. Energy Conf., 2013, pp. 695–698. [25]F. Kiefer, C. Ulzhofer, T. Brendemuhl, N. P. Harder, R. Brendel, V. Mertens, S. Bordihn, C. Peters, and J. W. Muller, “High efficiency n-type emitter-wrap- through silicon solar cells,” IEEE J. Photovoltaics, vol. 1, no. 1, pp. 49-53, 2011. [26]C. Ulzhofer, P. P. Altermatt, N. P. Harder, and R. Brendel, “Loss analysis of emitter-wrap-through silicon solar cells by means of experiment and three-dimensional device modeling,” J. Appl. Phys., vol. 107, no. 10, pp. 104509-1–104509-12, 2010. [27]B. Thaidigsmann, A. Drews, T. Fellmeth, P. S. Cast, A. Wolf, F. Clement, R. Preu, and D. Biro, “Synergistic Effects of Rear-Surface Passivation and the Metal Wrap Through Concept,” IEEE J. Photovoltaics, vol. 2, no. 2, pp. 109-113, 2012. [28]M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7 % Record Efficiency HIT Solar Cell on Thin Silicon Wafer,” IEEE J. Photovoltaics, vol. 4, no. 1, pp. 96-99, 2014. [29]A. Ingenito, S. L. Luxembourg, P. Spinelli, J. Liu, J. C. O. Lizcano, A. W. Weeber, O. Isabella, and M. Zeman, “Optimized Metal-Free Back Reflectors for High-Efficiency Open Rear c-Si Solar Cells,” IEEE J. Photovoltaics, vol. 6, no. 1, pp. 34-40, 2016. [30]J. P. Singh, S. Guo, I. M. Peters, A. G. Aberle, and T. M. Walsh, “Comparison of Glass/Glass and Glass/Backsheet PV Modules Using Bifacial Silicon Solar Cells,” IEEE J. Photovoltaics, vol. 5, no. 3, pp. 783-791, 2015. [31]U. A. Yusufoglu, T. M. Pletzer, L. J. Koduvelikulathu, C. Comparotto, R. Kopecek, and H. Kurz, “Analysis of the Annual Performance of Bifacial Modules and Optimization Methods,” IEEE J. Photovoltaics, vol. 5, no. 1, pp. 320-328, 2015. [32]W. Neu, A. Kress, W. Jooss, P. Fath, E. Bucher, “Low-cost multicrystalline back-contact silicon solar cells with screen printed metallization,” Sol. Energy Mater. Sol. Cells, vol. 74, pp. 139-146, 2002. [33]F. Fertig, N. Wöhrle, J. Greulich, K. Krauß, E. Lohmüller, S. Meier, A. Wolf, and S. Rein, “Bifacial potential of single- and double-sided collecting silicon solar cells,” Photovoltaics Res. Appl., vol. 24, no. 6, 2016. [34]E. V Kerschaver, C. Zechner, and J. Dicker, “Double sided minority carrier collection in silicon solar cells,” IEEE Trans. Electron Devices, vol. 47, no. 4, pp. 711-717, 2000. [35]R. M. Swanson and R. A. Sinton, “High-Efficiency Silicon Solar Cells,” Adv. Sol. Energy, pp. 427-484.1, 1990. [36]J. Dicker, J. O. Schumacher, W. Warta, and S. W. Glunz, “Analysis of one-sun monocrystalline rear-contacted silicon solar cells with efficiencies of 22.1%,” J. Appl. Phys., vol. 91, no. 7, pp. 4335-4343, 2002. [37]E. V. Kerschaver, R. Einhaus, J. Szlufcik, J. Nijs, and R. Mertens, “A novel silicon solar cell structure with both external polarity contacts on the back surface,” in Proc. 2nd WCPVSEC, 1998, pp.1479-1482. [38]A. G. Aberle, S. J. Robinson, A. Wang, J. Zhao, S. R. Wenham, and M. Green, “High‐efficiency silicon solar cells: Full factor limitations and non‐ideal diode behavior due to voltage‐dependent rear surface recombination velocity,” Photovoltaics Res. Appl., vol. 1, no. 2, pp. 133-143, 1993. [39]S. C. Pritchard, K. R. McIntosh, P. P. Altermatt, and C. B. Honsberg, “A Comparison of Single Junction and Transistor Structure Solar Cells,” Solar, vol. 97, 1997. [40]R. Guerrero-Lemus, R. Vega, T. Kim, A. Kimm, and L. E. Shephard, “Bifacial solar photovoltaics – A technology review,” Renew. Sust. Energ. Rev., vol. 60, pp. 1533-1549, 2016. [41]T.-H. Huang (2015), “A New Interdigitated Nanopillar HIT Solar Cell by Using Silicon-Carbide-Based Window Layer,” MS dissertation, Kaohsiung:National Sun Yat Sen University, Department of Electrical Engineering, Taiwan. [42]J.-Y. Wang (2013), “A Cd-free and ZnS based CIGS Solar Cell with a Wide-Bandgap InGaP Secondary Layer,” MS dissertation, Kaohsiung:National Sun Yat Sen University, Department of Electrical Engineering, Taiwan. [43]W. Deng, D. Chen, Z. Xiong, P. J. Verlinden, J. Dong, F. Ye, H. Li, H. Zhu, M. Zhong, Y. Yang, Y. Chen, Z. Feng, and P. Altermatt, “20.8% PERC Solar Cell on 156 mm × 156 mm P-Type Multicrystalline Silicon Substrate,” IEEE J. Photovoltaics, vol. 6, no. 1, pp. 3-9, 2016. [44]M. Padilla, B. Michl, N. Hagedorn, C. Reichel, S. Kluska, A. Fell, M. Kasemann, W. Warta, and M. C. Schubert, “Local Series Resistance Imaging of Silicon Solar Cells With Complex Current Paths,” IEEE J. Photovoltaics, vol. 5, no. 3, pp. 752-758, 2015. [45]C. Duran (2012), “Bifacial Solar Cells: High Efficiency Design, Characterization, Modules and Applications,” PhD dissertation, Konstanz:Konstanz University, Department of Physics, Germany. [46]L. Jiang, J. H. Lyou, S. Rane, E. A. Schiff, Q. Wang, and Q. Yuan, “Open-Circuit Voltage Physics in Amorphous Silicon Solar Cells,” Mat. Res. Soc. Symp. Proc., vol. 609, pp. 1-12, 2000. [47]P. Singh, and N. M. Ravindra, “Temperature dependence of solar cell performance - an analysis,” Sol. Energy Mater. Sol. Cells, vol. 101, pp. 36-45, 2012. [48]Y. Chen, Y. Yang, J. K. Marmon, X. Zhang, Z. Feng, P. J. Verlinden, and H. Shen, “Independent Al2O3/SiNx:H and SiO2/SiN x:H Passivation of p+ and n+ Silicon Surfaces for High-Performance Interdigitated Back Contact Solar Cells,” IEEE J. Photovoltaics, vol. 7, no. 1, pp. 51-57, 2016. [49]I. Cesar, M. Lamers, I. Romijn, K. Bakker, C. Olson, D. O. Saynova, Y. Komatsu, and A. Weeber, “Energy Band Diagram near the Interface of Aluminum Oxide on p-Si Fabricated by Atomic Layer Deposition without/with Rapid Thermal Cycle Annealing Determined by Capacitance–Voltage Measurements,” e-J. Surf. Sci. Nanotech, vol. 10, pp. 22-28, 2012. [50]S. Duttagupta, Z. Hameiri, T. Grosse, D. Landgraf, B. Hoex, and A. G. Aberle, “Dielectric Charge Tailoring in PECVD SiOx/SiNx and Application at the Rear of Al Local Back Surface Field Solar Cells," IEEE J. Photovoltaics, vol. 5, no. 4, pp. 1014-1019, 2015. [51]G. Du, B. Chen, N. Chen, and R. Hu, “Efficient Boron Doping in the Back Surface Field of Crystalline Silicon Solar Cells via Alloyed-Aluminum–Boron Paste,” IEEE Electron Device Lett., vol. 33, no. 4, pp. 573-575, 2012. [52]Y. Tomizawa, T. Imamura, M. Soeda, Y. Ikeda, and T. Shiro, “Laser doping of boron-doped Si paste for high-efficiency silicon solar cells,” Jpn. J. Appl. Phys., vol. 54, no. 8, pp. 1-5, 2015. [53]C. Geisler, S. Kluska, S. Hopman, and M. Glatthaar, “Passivation-Induced Cavity Defects in Laser-Doped Selective Emitter Si Solar Cells—Formation Model and Recombination Analysis,” IEEE J. Photovoltaics, vol. 5, no. 3, pp. 792-798, 2015.
|