跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 17:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:姜政良
研究生(外文):Jheng-liang Jiang
論文名稱:不同熱退火方式及銀摻雜對碲化銻熱電薄膜特性之影響
論文名稱(外文):Effects of different thermal annealing and silver doping methods on the thermoelectric properties of antimony telluride-based thin films
指導教授:陳英忠
指導教授(外文):Ying-Chung Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:132
中文關鍵詞:熱退火熱蒸鍍碲化銻功率因子銀摻雜
外文關鍵詞:Sb2Te3Thermal evaporationThermal annealingAg dopingPower factor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用熱蒸鍍方式於室溫下製備碲化銻(Sb2Te3)熱電薄膜於矽基板上,再分別利用高溫爐管與快速熱退火(RTA)兩種熱退火方式進行熱處理,以改善材料之熱電特性;另外,據文獻指出,利用摻雜的方式同樣亦可提升材料之熱電特性,因此,本研究亦製備Sb2Te3/Ag/ Sb2Te3薄膜結構,透過金屬銀(Ag)的摻雜來提升材料的導電性,並探討摻雜與熱退火方式對於熱電特性之影響。
由SEM與XRD分析得知,室溫下沉積之薄膜具有較平整的表面形貌,但具結晶性不佳與缺陷多等缺點,使功率因子偏低。利用退火能有效地減少薄膜內部之晶格缺陷,使載子濃度下降,提升Seebeck係數;隨著退火溫度的增加,薄膜晶相強度逐漸增強,載子遷移率增加,導電率呈現上升趨勢;實驗結果顯示,在室溫下沉積之Sb2Te3薄膜,於RTA退火溫度300°C,退火時間10分鐘的情況下,具有較佳之功率因子約為10.62 µW/cm·K2。
在探討銀(Ag)原子摻雜部份,室溫下Ag之摻雜濃度為4.25 %時,薄膜之功率因子約為0.81 µW/cm·K2。接著,以此摻雜濃度進行熱退火處理,在退火溫度較低時,載子濃度增加,使Seebeck係數降低;隨著退火溫度增加,Seebeck係數會呈現上升之趨勢;經由EDS(mapping)分析,Ag原子經由熱退火處理後會擴散至Sb2Te3之上下層;在RTA退火溫度300°C,退火時間10分鐘,導電率會提升至1509.98 S/cm,換算後可得最佳功率因子約為20.56 µW/cm·K2。實驗結果得知,Ag摻雜能有效地提升導電率,以RTA退火可減少熱處理的時間,並達到與爐管相近之效果。
In this study, the Sb2Te3 thermoelectric thin films were deposited on silicon substrates by thermal evaporation method. In order to improve the thermoelectric properties of the materials, the heat treatments were carried out by furnace annealing and rapid thermal annealing, respectively. On the other hand, according to the literatures, the doping method also can enhance the thermoelectric properties. Therefore, in this study, thin film with structure of Sb2Te3/Ag/Sb2Te3 was prepared, in which Ag was adopted as a dopant to enhance the conductivity. The effects of doping and different annealing methods on the thermoelectric properties were investigated.
The surface morphology and crystalline structures of the thin films were analyzed by SEM and XRD, respectively. The thin films deposited at room temperature had poor crystallization and many defects. Therefore, the power factor of thin films was lower. Annealing could effectively reduce the defects of the thin films and carrier concentration, and the Seebeck coefficient was increased. With annealing temperature increasing, the X-ray diffraction peaks of thin films would be enhanced, and carrier mobility was increased. Therefore, the conductivity was increased. The results showed that the optimal power factor of 10.62 µW/cm·K2 was obtained at the annealing temperature of 300°C for 10 minutes by rapid thermal annealing.
Another object of this study focused on the Ag doping. The value of power factor of 0.81 µW/cm·K2 could be obtained at the Ag doping concentration of 4.25 wt%, and the substrate temperature of room temperature. The Seebeck coefficient was decreased by the increased carrier concentration at low annealing temperature, and then increased with the increase of annealing temperature. The diffusion phenomenon of Ag doping in the thin films was obtained from EDS (mapping) analysis. After thermal annealing, Ag atom would diffuse into the upper and lower Sb2Te3 layers. The conductivity of thin film was increased to 1509.98 S/cm after Ag doping and annealed at 300°C for 10 minutes by rapid thermal annealing. The maximized value of power factor of 20.56 µW/cm·K2 was obtained. According to the experimental results, the Ag doping could effectively improve the conductivity of the thin films and the rapid thermal annealing could reduce the processing time to achieve the similar results of furnace annealing.
中文審定書 i
英文審定書 ii
誌謝 iii
摘要 iv
Abstract vi
目錄 viii
圖目錄 xi
表目錄 xvi
第一章 緒 論 1
1.1 前言 1
1.2 熱電材料的應用 3
1.2.1 熱電應用於汽車排放出的廢熱回收 3
1.2.2 製程廢熱之回收發電 4
1.2.3 體溫供電的智能手錶(Powerwatch) 5
1.2.4 熱電致冷模組應用的民生產品 6
1.3 研究動機 7
1.4 研究規劃 11
第二章 熱電理論分析 12
2.1 熱電效應 12
2.1.1 Seebeck效應 12
2.1.2 Peltier效應 13
2.1.3 Thomson效應 14
2.2 熱電材料之物理特質 16
2.2.1熱電優值(Figure of merit, ZT) 16
2.2.2熱電轉換效率 20
2.3 文獻回顧 22
第三章 實驗方法與步驟 26
3.1 實驗步驟 26
3.2 實驗流程 27
3.2.1基板清洗 27
3.2.2 Sb2Te3薄膜於不同熱退火處理之熱電特性探討 28
3.2.3 Ag摻雜Sb2Te3薄膜於不同熱退火處理之熱電特性探討 30
3.3 實驗儀器與製程介紹 32
3.3.1熱蒸鍍機原理之介紹 32
3.3.2熱退火製程原理之介紹 34
3.3.3 X光粉末繞射儀(X-Ray Diffractometer, XRD) 37
3.3.4掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 38
3.3.5 X光能譜散射分析儀(Energy Dispersive Spectroscopy, EDS) 39
3.3.6 Seebeck 係數量測 39
3.3.7電阻率量測 40
第四章 實驗結果與討論 42
4.1 Sb2Te3原始材料分析 42
4.2室溫下沉積Sb2Te3薄膜之特性探討 43
4.2.1 Sb2Te3薄膜於不同沉積時間之物性分析 43
4.2.2 Sb2Te3薄膜於不同沉積時間之電性分析 46
4.3 Sb2Te3薄膜於爐管退火後之特性探討 48
4.3.1 Sb2Te3薄膜於爐管不同退火溫度之物性分析 48
4.3.2 Sb2Te3薄膜於爐管不同退火溫度之電性分析 53
4.3.3 Sb2Te3薄膜於爐管不同退火時間之物性分析 56
4.3.4 Sb2Te3薄膜於爐管不同退火時間之電性分析 59
4.4 Sb2Te3薄膜於RTA退火後之特性探討 62
4.4.1 Sb2Te3薄膜於RTA退火5分鐘下,不同退火溫度之物性分析 62
4.4.2 Sb2Te3薄膜於RTA退火5分鐘下,不同退火溫度之電性分析 67
4.4.3 Sb2Te3薄膜於RTA退火10分鐘下,不同退火溫度之物性分析 69
4.4.4 Sb2Te3薄膜於RTA退火10分鐘下,不同退火溫度之電性分析 73
4.5室溫下沉積Sb2Te3/Ag/ Sb2Te3薄膜結構之特性探討 76
4.5.1 Sb2Te3/Ag/Sb2Te3薄膜結構於不同Ag比例之物性分析 76
4.5.2 Sb2Te3/Ag/Sb2Te3薄膜結構於不同Ag比例之電性分析 79
4.6 Sb2Te3/Ag/Sb2Te3薄膜結構於爐管退火之特性探討 81
4.6.1 Sb2Te3/Ag/Sb2Te3薄膜結構於爐管不同退火溫度之物性分析 81
4.6.2 Sb2Te3/Ag/Sb2Te3薄膜結構於爐管不同退火溫度之電性分析 85
4.6.3 Sb2Te3/Ag/Sb2Te3薄膜結構於爐管不同退火時間之物性分析 88
4.6.4 Sb2Te3/Ag/Sb2Te3薄膜結構於爐管不同退火時間之電性分析 91
4.6.5 Sb2Te3/Ag/Sb2Te3薄膜結構於爐管退火溫度250°C,退火時間90分鐘之EDS (Mapping)分析 93
4.7 Sb2Te3/Ag/Sb2Te3薄膜結構於RTA退火之特性探討 94
4.7.1 Sb2Te3/Ag/Sb2Te3薄膜結構於RTA退火5分鐘下,不同退火溫度之物性分析 94
4.7.2 Sb2Te3/Ag/Sb2Te3薄膜結構於RTA退火5分鐘下,不同退火溫度之電性分析 98
4.7.3 Sb2Te3/Ag/Sb2Te3薄膜結構於RTA退火10分鐘下,不同退火溫度之物性分析 101
4.7.4 Sb2Te3/Ag/Sb2Te3薄膜結構於RTA退火10分鐘下,不同退火溫度之電性分析 105
4.7.5 Sb2Te3/Ag/Sb2Te3薄膜結構於RTA退火溫度300°C,退火時間10分鐘之EDS (Mapping)分析 108
第五章 結 論 109
參考文獻 111
[1]行政院環境保護署,“巴黎氣候公約會議進展暨因應氣候變遷後續規劃作為”,2015年。
[2]陳文姿,環境資訊中心,“《溫減法》上路,逐條解析看能源轉型未來”,2015年。
[3]中華民國行政院,經濟能源農業處,“我國綠色能源發展佈局”,2016年。
[4]黃振東,工業技術研究院材料與化工研究所,“熱電材料”,科學發展486期,2013年。
[5]經濟部技術處,“2012產業技術白皮書-先進綠能材料”,2012年。
[6]朱旭山,“熱電技術於車輛廢熱回收及致冷空調之研發與應用”,工業材料雜誌310期,2012年。
[7]宋柏毅,工業技術研究院,“低溫熱電廢熱回收利用”,2015年。
[8]“創意發明-用人類體溫作電力來源的智能手錶”,PressLogic-TechStart科技創誌,2016年。
[9]宋柏毅,工業技術研究院,“熱電致冷模組及家用電子產品應用”,2015年。
[10]朱旭山,“奈米結構熱電材料之發展回顧”,工業材料雜誌298期,2011年。
[11]朱旭山,工研院材化所,“奈米結構熱電材料之最新發展”,工業材料雜誌259期,2008年。
[12]M. Martín Gonzálezn, O. Caballero Calero, P. Díaz Chao, “Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field”, Renewable and Sustainable Energy Reviews, Vol. 24, pp.288-305, 2013.
[13]徐泓璋,工研院材化所,“以奈米結構概念提升熱電材料ZT值”,工業材料雜誌334期,2014年。
[14]V. Jovovic, J. P. Heremans, “Doping Effects on the Thermoelectric Properties of AgSbTe2”, Journal of electronic matertials, Vol. 38, pp. 1504-1509, 2009.
[15]S. V. Faleev, F. Léonard, “Theory of enhancement of thermoelectric properties of materials with nanoinclusions”, Physical Review B, Vol. 77, pp.214304-1 - 214304-9, 2008.
[16]葉建弦,工業技術研究院-綠能與環境研究所,“固態熱電材料在廢熱回收領域之應用”,2014年。
[17]H. Huang, W. L. Luan, S. T. Tu, “Influence of annealing on thermoelectric properties of bismuth telluride films grown via radio frequency magnetron sputtering”, Thin Solid Films, Vol. 517, pp.3731-3734, 2009.
[18]巫振榮,國家奈米元件實驗室,“熱電元件應用”,Nano Communication,20卷,No.4。
[19]朱旭山,“熱電材料與元件之發展與應用”,工業材料雜誌220期,2005年。
[20]葉晉嘉,“N型Bi2Te2.7Se0.3熱電材料之研究”,國立中山大學電機工程學系碩士論文,2011年。
[21]H. J. Goldsmid, “Thermoelectric Refrigeration”, New York, Plenum Press, 1964.
[22]L. D. Hicks, M. S. Dresselhaus, “Thermoelectric figure of merit of a one-dimensional conductor”, Physical Review B, Vol. 47, pp. 16631-16634, 1993.
[23]W. Zheng, P. Bi, H. Kang, W. Wei, F. Liu, J. Shi, L. Peng, Z. Wang, R.i Xiong, “Low thermal conductivity and high thermoelectric figure of merit in p-type Sb2Te3/poly(3,4-ethylenedioxythiophene) thermoelectric composites”, Applied Physics Letters, Vol. 105, pp. 023901-1 - 023901-4, 2014.
[24]X. Wanga, H. Hea, N. Wanga, L. Miao, “Effects of annealing temperature on thermoelectric properties of Bi2Te3 films prepared by co-sputtering”, Applied Surface Science, Vol. 276 , pp.539-542, 2013.
[25]M. M. Rashida, K. H. Chob, G. S. Chung, “Rapid thermal annealing effects on the microstructure and the thermoelectric properties of electrodeposited Bi2Te3 film”, Applied Surface Science, Vol. 279, pp.23-30, 2013.
[26]J. C. Zheng, “Recent advances on thermoelectric materials”, Frontiers of Physics in China, Vol.3, pp 269-279, 2008.
[27]N. W. Park, W. Y. Lee, J. E. Hong, T. H. Park, S. G. Yoon, H. Im, H. S. Kim, S. K. Lee, “Effect of grain size on thermal transport in post-annealed antimony telluride thin films”, Parket al. Nanoscale Research Letters, Vol. 10, pp.1-9, 2015.
[28]M. Jonson, G. D. Mahan, “Mott’s formula for the thermopower and the Wiedemann-Franz law”, Physical Review B, Vol. 21, pp. 4223-4229, 1980.
[29]鄭安良,“P型熱電材料Bi0.5Te1.5Se3之合成與分析”,國立中山大學電機工程學系碩士論文,2011年。
[30]D. M. Rowe, “Thermoelectrics Handbook:Macro to Nano”, CRC press, 2006.
[31]Y. Lan, A. J. Minnich, G. Chen, Z. Ren, “Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach”, Advanced Functional Materials, Vol.20, pp. 357-376, 2010.
[32]I. H. Kim, “Electronic transport properties of the flash-evaporated p-type Bi0.5 Sb1.5 Te3 thermoelectric thin films”, Materials Letters, Vol. 44, pp.75-79, 2000.
[33]Y. Zhang, M. L. Snedaker, C. S. Birkel, S. Mubeen, X. Ji, Y. Shi, D. Liu, X. Liu, M. Moskovits, G. D. Stucky, “Silver-Based Intermetallic Heterostructures in Sb2Te3 Thick Films with Enhanced Thermoelectric Power Factors”, Nano Letters, Vol. 12, pp. 1075–1080, 2012.
[34]J. E. Hong, S. K. Lee, S. G. Yoon, “Enhanced thermoelectric properties of thermal treated Sb2Te3 thin films”, Journal of Alloys and Compounds, Vol. 583, pp.111–115, 2014.
[35]H. S. Dow, M. W. Oh, B. S. Kim, S. D. Park, B. K. Min, H. W. Lee, D. M. Wee, “Effect of Ag or Sb addition on the thermoelectric properties of PbTe”, Journal of Applied Physics, Vol. 108, pp.113709-1 - 113709-7, 2010.
[36]X. Zhang, X. Y. Ma, Q. M. Lu, F. P. Zhang, Y. Q. Liu, J. X. Zhang, L.Wang, “Thermoelectric Properties of Ag-Doped n-Type (Bi2-xAgxTe3)0.96-(Bi2Se3)0.04 Pseudobnary Alloys”, Journal of Electronic Materials, Vol. 40, pp.773-777, 2011.
[37]鍾思行,“以快速熱退火法加強金屬側向誘發結晶速率之研究”,國立交通大學材料科學與工程研究所碩士論文,2007年。
[38]鄭信民,“X光繞射原理應用簡介”,工業雜誌材料181期,2002年。
[39]羅聖全,“科學基礎研究之重要利器–掃瞄式電子顯微鏡(SEM)”,科學研習, No.52-5,2013年。
[40]L. J. Swartzendruber, “Four-point probe measurement of non-uniformities in semiconductor sheet resistivity”, Solid-State Electron, Vol.7, pp. 413-422, 1964.
[41]陳偉,“以熱蒸鍍法沉積碲化銻熱電薄膜之研究”,國立中山大學電機工程學系碩士論文,2013年。
[42]J. A. Venables, G. L. Price, “Nucleation of thin films”, Epitaxial Growth, Part B, Academic Press, New York, pp. 381-436, 1975.
[43]P. Fan, Z. H. Zheng, G. X. Liang, D. P. Zhang, X. M. Cai, “Thermoelectric characterization of ion beam sputtered Sb2Te3 thin films”, Journal of Alloys and Compounds, Vol. 505, pp. 278-280, 2010.
[44]B. Fang, Z. Zeng, X. Yan, Z. Hu, “Effects of annealing on thermoelectric properties of Sb2Te3 thin films prepared by radio frequency magnetron sputtering”, Journal of Materials Science: Materials in Electronics, Vol.24, pp. 1105-1111, 2013.
[45]張志宇,“經電流輔助退火處理之Bi0.5Sb1.5Te3/Sb多層濺鍍薄膜熱電性質研究”,國立清華大學材料科學工程研究所碩士論文,2010年。
[46]B. Lv, S. Hu, W. Li, X. Di, L. Feng, J. Zhang, L. Wu, Y. Cai, B. Li, Z. Lei, “Preparation and Characterization of Sb2Te3Thin Films by Coevaporation”, International Journal of Photoenergy, Vol. 2010, pp.1-4, 2010.
[47]M. Takashiri, K. Miyazaki, H. Tsukamoto, “Structural and thermoelectric properties of fine-grained Bi0.4Te3.0Sb1.6 thin films with preferred orientation deposited by flash evaporation method”, Thin Solid Films, Vol. 516, pp. 6336-6343, 2008.
[48]X. Zhang, T. Y. Zhang, M. Wong, Y. Zohar, “Rapid Thermal Annealing of Polysilicon Thin Films”, Journal of Microelectromechanical Systems, Vol. 7, pp. 356-364, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top