跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 18:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝政諺
研究生(外文):Chen-Yen Hsieh
論文名稱:以低熱預算二氧化碳雷射退火形成均質且超低阻值鎳矽化物之研究
論文名稱(外文):A Study of Ultralow Sheet Resistance and Homogenous Nickel Silicide by Low Thermal Budget Carbon Dioxide Laser Spike Annealing
指導教授:莊豐任
指導教授(外文):Feng-Renn Juang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:80
中文關鍵詞:二氧化碳雷射熱退火鰭式場效電晶體環形傳輸線模型鎳矽化物
外文關鍵詞:FinFETMR-CTLMNickel silicideCarbon Dioxide Laser Annealing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
隨著半導體元件在尺寸上持續的突破並且尋求微縮的各種可能途徑,在發展的過程當中,過多的熱預算會造成不理想的雜質擴散或是閘極介電層的劣化,如此一來,原有的熱退火方式將不再適用。本論文旨在討論由低熱預算二氧化碳雷射熱退火參與甚至取代自我對準之鎳矽化物製程中的第二道退火步驟,並針對雷射載盤的升溫與否以及100、120、130、140、150等雷射瓦數所形成的矽化物特性進行分析比較 。
經實驗得知,於鎳矽化物製程步驟中的第二道退火應用常溫載盤的二氧化碳雷射熱退火,其片電阻值並不會有所改變。直到加入第三次快速升溫熱退火,片電阻值才會由原本的100 ohm/sq. 降至13 ohm/sq.。而當載盤溫度升至350°C後,對經過第一階段退火的鎳矽化物進行雷射退火的話,其片電阻可以直接從100 ohm/sq. 降至 9 ohm/sq. 便不須再利用第三道退火來輔助鎳矽化物轉相。兩種條件所形成的矽化物皆比傳統兩階段RTA退火製作之鎳矽化物要來的低,同時擁有更低的熱預算。此外,經由環形傳輸線模型(MR-CTLM)所萃取的特徵電阻率可以比較出,雷射退火有助於降低接觸電阻。
最後再將上述的實驗技術整合至鰭式場效電晶體的製程中,經過Agilent B1500A半導體參數量測儀進行量測後,沒有雷射參與的標準元件其汲極電流可以改善為原來的1.25倍。由室溫載盤雷射參與的汲極電流可以達到1.27倍。最後,由升溫載盤雷射所參與形成鎳矽化物的元件可以完全取代傳統鎳矽化物製程中的第二道快速熱退火步驟,同時汲極電流可以改善為原來的1.3倍。
In this thesis, we propose low thermal budget laser technologies to form a homogenous and ultralow sheet resistance nickel silicide on the Source/Drain region of bulk silicon FinFET, thereby improves the device performance.
Carbon dioxide laser is employed to replace the second annealing step of nickel silicide process. We investigate the effect of the chuck temperature and laser power on both physical and electrical characteristics of the blanket wafer. According to the experiment results, the sheet resistance doesn’t change after applying a laser annealing at the 2nd annealing step of nickel silicide which is on a room-temperature chuck. Moreover, the 3rd annealing by RTA can make the sheet resistance reduce from 100 ohm/sq. to 13 ohm/sq. However, when the heated chuck is applied, nickel silicide can be formed without the 3rd annealing and a lower sheet resistance about 9 ohm/sq. can be obtained. The physical mechanism between chuck temperature and laser absorption of silicon substrate will be detailed in this thesis as well.
We integrate the technologies mentioned above to the silicon bulk FinFET, and the highest drive current can be reached to 648 μA/um for n-type, which is 1.3 times to the device without silicide. Nickel silicide fabricated with laser spike annealing involvement has better electrical properties and also has lower thermal budget, thus it is beneficial to develop the device with smaller physical dimensions.
Finally, we apply multi-ring circular transmission line model to extract the specific resistivity. According to the experiment result, nickel silicide formed with laser has lower resistivity, which means that laser has a potential on reducing the contact resistance.
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1金屬矽化物之起源 1
1.2金屬矽化物 1
1.3研究動機 3
1.4論文架構 4
第二章 基礎理論 5
2.1 雷射退火的機制與現象 5
2.1.1 矽的輻射吸收機制 5
2.1.2 元件於雷射製程中的圖案效應(Pattern effect) 6
2.2 金屬與半導體接觸理論 7
2.2.1 P型半導體與金屬 8
2.2.2 半導體與金屬之間的電流傳輸 9
2.2.3 特徵電阻率 9
2.3 圓形傳輸線理論(CTLM) 10
2.3 環形傳輸線理論(MR-CTLM) 13
2.4 元件參數萃取 14
2.4.1 片電阻 14
2.4.2 次臨界擺幅 16
2.4.3 臨界電壓 16
第三章 儀器使用和元件製程 17
3.1 電晶體製程設備 17
3.1.1 FSE Cluster PVD-多層金屬濺鍍系統 17
3.1.2 Oxford PECVD-電漿輔助化學氣相沉積系統 19
3.1.3 高密度電漿化學氣相沉積系統(HDPCVD) 19
3.1.4 多晶矽與介電質乾式蝕刻機 20
3.1.5 電子束離子束雙束系統(FIB) 20
3.2 材料分析儀器 23
3.2.1 場發射穿透式電子顯微鏡(TEM) 20
3.2.1 X光繞射儀(XRD) 20
3.2.3 原子力顯微鏡(AFM) 20
3.3 電性量測系統 23
3.4 鰭式電晶體製程 23
第四章 結果與討論 26
4.1 由雷射退火輔助形成之鎳矽化物 26
4.2 材料分析 27
4.3 熱穩定性實驗 28
4.4 鰭式電晶體搭載雷射退火之鎳矽化物 28
4.5 環形傳輸線與特徵電阻率 29
第五章 結論與未來展望 30
5.1 結論 30
5.2 未來展望 31
參考文獻 32
附表 34
附圖 36
[1]H. Iwai, T. Ohguro, and S. Ohmi. ‘‘NiSi silicide technology for scaled CMOS’’ Microelectronic Engineering, vol. 60, pp. 157-169, 2002.
[2]T. Morimoto, H. S. Momose, T. Iinuma, I. Kunishima, K. Suguro, H. Okano, I. Katakabe, H. Nakajima, M. Tsuchiaki, M. Ono, Y. Katsumata, and H. Iwai. ‘‘A NiSi salicide technology for advanced logic devices’’ in Electron Device Meeting, 1991. IEDM ’91. Technical Digest. International , 1991, pp. 653-656.
[3]K. Maex, G. Ghosh, L. Dalaey, V. Probst, P. Lippens, L. Van denhove, and R. F. De Keersmaecker. "Stability of As and B Doped Si with Respect to Overlaying CoSi2 and TiSi2 Thin Films" J. Mater. Res., vol. 4, pp. 1209-1217, 1989.
[4]V. Probst, H. Schaber, P. Lippens, L. Van den hove, and R. De Keersmaecker. "Limitations of TiSi2 as a Source for Dopant Diffusion" Appl. Phys. Lett., vol. 52, pp. 1803-1805, 1988.
[5]K. De Keyser, C. Van Bockstael, R. L. Van Meirhaeghe, C. Detavernier, E. Verleysen, H. Bender, W. Vandervorst, J. Jordan-Sweet, and C. Lavoie. "Phase Formation and Thermal Stability of Ultrathin Nickel-Silicides on Si(100)" Appl. Phys. Lett., vol. 96, pp. 173503-3, 2010.
[6]R. Tung, J. M. Gibson, and J. M. Poate., "Formation of Ultrathin Single-Crystal Silicide Films on Si: Surface and Interfacial Stabilization of Si-NiSi2 Epitaxial Structures," Phys. Rev. Lett. , vol. 50, pp. 429-432, 1983.
[7]F. d''Heurle, C. S. Petersson, J. E. E. Baglin, S. J. La Placa, and C. Y. Wong., "Formation of Thin Films of NiSi: Metastable Structure, Diffusion Mechanisms in Intermetallic Compounds," J. Appl. Phys, vol. 55, pp. 4208-4218, 1984.
[8]J. Hebb, Y. Wang, S. Shetty, J. M. Whirter, D. Owen, M. Shen, V. Le, J. Mileham, D. Gaines, S. Anikitchev, S. Chen, P. Bischoff, "Laser Spike Annealing for Nickel Silicide Formation", Proc. Adv. Semicond. Manuf. Conf., pp. 1-6, 2011.
[9]S. Chen, J. Hebb, A. Jain, S. Shetty, and Y. Wang, “Wafer Temperature Measurement and Control During Laser Spike Annealing,” Proc. Int. Conf. on Adv. Thermal Processing Semi, pp. 239-244, 2007.
[10]J. McWhirter, D. Gaines, and P. Zambon, “Emission Feedback Control System for Sub-millisecond Laser Spike Anneal,” Proc. IEEE Int. Conf. on Adv. Thermal Processing Semi, pp. 157-162, 2008.
[11]K. Adachi et al., Symp. VLSI Tech. Dig., (2005) p. 142
[12]H. Yu et al., "Multi-Ring Circular Transmission Line Model for Ultralow Contact Resistivity Extraction", IEEE Electron Dev. Lett., vol. 36, no. 6, pp. 600-602, 2015.
[13]D. Leonelli, A. Vandooren, R. Rooyackers, A. S. Verhulst, S. De Gendt, M. M. Heyns, G. Groeseneken, "Silicide Engineering to Boost Si Tunnel Transistor Drive current", Jpn. J. Appl. Phys., vol. 50, no. 4, pp. 04DC05-1-04DC05-4, 2011.
[14]X. Yuan, J. Park, J. Wang, E. Zhao, D.C. Ahlgren, T. Hook, J. Yuan; V.W.C. Chan, H. Shang, C. Liang, R. Lindsay, S. Park, and H. Choo, "Gate-Induced-Drain-Leakage Current in 45-nm CMOS Technology," IEEE Trans. Device Mater. Rel., vol.8, no.3, pp.501-508, Sept. 2008
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top