(18.210.12.229) 您好!臺灣時間:2021/02/26 10:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳翰林
研究生(外文):Han-lin Wu
論文名稱:非預混蓄熱型燃燒器使用尾氣回收機制之燃燒模擬
論文名稱(外文):Simulation of Non-premixed Combustion in Regenerative Burner with Exhaust Gas Recirculation Mechanism
指導教授:許聖彥
指導教授(外文):Sheng-Yen Hsu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:74
中文關鍵詞:氮氧化物生成尾氣回收循環計算流體力學非預混甲烷火焰蓄熱燃燒
外文關鍵詞:exhaust gas recirculationcomputation fluid dynamicsnitric oxides formationnon-premixed methane flameregenerative combustion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
非預混火焰燃燒器的設計上使用富氧燃燒,功率與燃料的使用為主要的重點。為了節省燃料,使用預熱新鮮空氣的方法來達到相同的燃燒功率。此方法可節省燃料的化學能消耗在加熱冷新鮮空氣的部分,讓整體燃燒反應更強烈,但是這會使燃燒生成火焰的最高溫度較高,在燃燒室內產生強烈局部高溫。從氮氧化物的生成機制來看,相同氧氣濃度之下,較高火焰溫度會有較多的氮氧化物生成與排放。
為了降低氮氧化物的生成與排放,則使用EGR法將高溫尾氣與新鮮空氣混合,此方法可稀釋氧氣濃度來降低燃燒反應率,並且發生熱交換來加熱新鮮空氣,也是節省燃料的方法。
本研究先利用多步驟零維燃燒模型計算空燃比=11的甲烷化學反應燃燒的絕熱火焰溫度、產物組份比例。以目標絕熱火焰溫度為基礎之下使用預熱新鮮空氣與EGR機制,兩種機制來計算燃料所能夠節省的比例,再依此建立目標功率89000 kcal/hr二維的燃燒模型。二維燃燒模型顯示出火焰特性與氮氧化物生成分佈,並且分析比較二維模型與多步驟零維模型所得到結果。
目前工業使用上較少將預熱新鮮空氣與EGR同時使用,而本研究將為此兩種機制下模擬功率89000 kcal/hr,空燃比=11的非預混火焰燃燒器的燃燒反應進行模擬並交叉使用兩種機制。研究結果發現固定預新鮮空氣預熱程度之下搭配使用EGR比例的情況下,氮氧化物的排放量可最多降低65%,且最多節省燃料68%。
本研究提供非預混火焰燃燒器的定性分析,能夠預測出新鮮空氣的預熱程度與使用EGR比例對於火焰特性與氮氧化物生成與排放。
Fuel lean combustion is used in non-premixed flame burner designing, power and fuel usage are the most considered factors. In order to decrease fuel usage, preheat input air is a normal way to reach the target power. This method can save the chemical energy in fuel from heating cold fresh air, enhance combustion reaction, but it will form higher peak flame temperature, and create a local high temperature zone in combustion chamber. Due to the formation of NOx strongly relating to temperature, higher temperature causes more NOx formation and emission under same oxygen concentration condition.
To reduce NOx formation and emission, EGR method collects hot exhaust gas and mixes it with fresh air. The method dilutes oxygen concentration and reduce the combustion reaction rate. It also heat up colder fresh air, which is also another way to save fuel usage.
Firstly, a multi-step dimensionless combustion model is used to calculate an Air/Fuel = 11 methane combustion, adiabatic flame temperature and species. Target adiabatic flame temperature is set up, and then we calculate the fuel usage for using EGR method and preheat fresh air combustion. A two dimension combustion model is built with target power 89000 kcal/hr. The two dimensional combustion model shows flame features and NOx distribution. Compare and analyze the results between di-mensionless and 2-D model.
EGR method and preheating fresh air does not simultaneously apply in industrial burner. This study simulated non premixed combustion with power 89000 kcal/hr and air fuel ratio=11, and using EGR method and preheating fresh air. Results show that max reduction of NOx emission 65%, max fuel usage reduction 68%.
Research provides qualitative analysis for non-premixed burner under different EGR ratios and different temperatures preheated fresh air, which can predict NOx emission and flame characteristic for burner designing.
論文審定書 i
誌謝 ii
摘要 iii
圖目錄 vii
表目錄 ix
符號說明 x
本文架構 xii
第1章 序論 1
1.1 前言 1
1.2 文獻回顧 3
1.2.1 蓄熱型燃燒器應用與相關背景 3
1.2.2 尾氣回收機制降低氧氣濃度對NOx排放燃燒表現影響 4
1.2.3 燃燒器入口配置對於火焰特性影響 9
1.2.4 氮氧化物NOx介紹與機制 13
1.3 研究目的 17
第2章 數學模型與研究方法 18
2.1 多步驟燃燒零維模型 18
2.2 二維軸對稱模型建立 21
2.2.1 模型幾何與基本假設 21
二維軸對稱模型之統御方程式與本研究模型的基本假設如下: 25
2.2.2 統御方程式 25
2.2.3 NO反應模型 28
2.2.4燃燒反應模型 31
2.3 二維模型邊界條件 32
2.4 數值方法 33
第3章 結果與討論 36
3.1 零維模型 36
3.2 二維模型 39
3.2.1 二維模型中預熱氣體對燃燒表現影響 42
3.2.2 二維模型中EGR機制對燃燒表現影響 45
第4章 結論與未來展望 57
參考文獻 59
[1] 經濟部能源局http://www.moeaboe.gov.tw/
[2] 陳文杰 “蓄熱式燃燒技術” 工研院能資所淨潔能源組, 1998
[3] A.K. Gupta “Flame Characteristic and Challenges with High Temperature Air Combustion” University of Maryland, Department of Mechanical Engineering
[4] V. Kumar., J. Jayant “Finite Element Analysis of EGR Coolers for Diesel Engine” Accent Journal of Economics Ecology & Engineering, vol 01, issue 02, 2016
[5] J.A. Miller, C.T. Bowman “Mechanism and Modeling of Nitrogen Chemistry in Combustion” Prog. Energy Combust Sci. 15, pp. 287-338, 1989
[6] J. A. Wiinning and J. G. Wiinning “Flameless Oxidation to Reduce Thermal NO Formation” Prog. Energy Combust Sci. Vol. 23, pp. 81-94, 1997
[7] C.T. Bowman, “Control of Combustion Generated Nitrogen Oxide Emissions: Technology Driven by Regulation” 24th Symposium on Combustion, Sydney 1992.
[8] M. Flamme, H. Kremer “NOx-Reduction potential of high temperature processes”. International Gas Research Conference, Cannes, France, 1995.
[9] A. Saul, D. Altemark “Lean-Burn premixed Combustion in Gas Turbine Combus-tors”. Gas Warme International 40, p. 336, 1991
[10] D. Tabacco, C. Innarella, C. Bruno “Theoretical and Numerical Investigation of Flameless Combustion” Combustion Science and Technology, 2002
[11] J.S. Byun, J. Park “Predicting the Performance and Exhaust NOx Emissions of a Spark-Ignition Engine Generator Fueled with Methane Based Biogases Containing Various Amounts of CO2” Journal of Natural Gas Science and Engineering 22, pp.196-202, 2015
[12] M. M. Z. Shahadat, M. N. Nabi, M. S. Akhter, M. S. H. K.Tushar “Combined Effect of EGR and Inlet Air Preheating on Engine Performance in Diesel Engine” In-ternational Energy Journal 9th, pp. 109-116, 2006
[13] 黃逸芳 “氫燃燒器與低氮氧化物燃燒器實作研究” 國立中央大學機械工程所, 2006
[14] 楊政憲 “高雷諾數低NOx預混弱漩渦噴流燃燒器” 國立中央大學機械工程所, 2008
[15] 邱垂隆 “低氮氧化物氫燃燒器:紊流燃燒速度與化學螢光量測” 國立中央大學機械工程所, 2010
[16] 曾柏綸, 謝煒東, 吳明勳 “改造盛鋼桶加熱爐進行純氧燃燒之加熱特性模擬” 中國機械工程學會31th, 2012
[17] 邱志斌 “添加中心空氣噴流於甲烷與合成氣混燒之斜衝火焰特性研究” 中華民國燃燒與能源學術研討會26th, 2016
[18] K. Kawaguchi “Fuel Combustion Apparatus Employing Staged Combustion” U.S. Patent, no. 829240, 1979
[19] D. B. Olsen, M. Kohls, G. Arney “ Impact of Oxidation Catalysts on Exhaust NO2/NOx Ratio from Lean-Burn Natural Gas Engines” Journal of the Air & Waste Management Association, 2012
[20] S. R. Turns “Understanding NOx Formation in Non-Premixed Flames: Experi-ments and Modeling” Energy Combust. Sci. Vol.21, pp. 351-385, 1995
[21] D.L. Baulch, D.D. Drysdall, D.G. Horne, A.C. Lloyd “Evaluated Kinetic Data for High Temperature and Reactions”, vol. 1-3, Butterworth, 1973
[22] C.P. Fenimore “Formation of Nitric Oxide in Premixed Hydrocarbon Flames” The Combustion Institute 13th, p.373, 1971
[23] M. Missaghi “Mathematical Modelling of Chemical Sources in Turbulent Com-bustion” PhD thesis, The University of Leeds, UK, 1987
[24] F.J. Barnes, J.H. Bromly, T.J. Edwards, R. Madngezewsky “NOx Emissions from Radiant Gas Burners” Journal of the Institute of Energy, vol. 155, pp. 184-188, 1988
[25] R.K. Hanson, S. Salimian “Survey of Rate Constant in H/N/O Systems” Com-bustion Chemistry, pp. 361, W.C. Gardiner, 1984
[26] G.G. De Soete “Overall Reaction Rates of NO and N2 Formation from Fuel Ni-trogen” The Combustion Institute 15th, p. 1093, 1975
[27] V. Dupont, M. Porkashanian, A. Williams, R. Woolley “Reduction of NOx for-mation in Natural Gas Burner Flames” Fuel 72th, pp. 497-503, 1993
[28] P.C. Melte, D.T. Pratt “Measurement of Atomic Oxygen and Nitrogen Oxides in Jet Stirred Combustion” The Combustion Institute 15th, pp. 1061-1070, 1974
[29] S.M. Correa “A Review of NOx Formation Under Gas-Turbine Combustion Conditions” Combustion Science and Technology, vol. 87, pp. 329-362, 1992
[30] P. Glarborg, J.E. Johnsson, K. Dam-Johansen “Kinetics of Homogeneous Nitrous Oxide Decomposition” Combustion and Flame, vol.99, pp. 523-532, 1994
[31] R.C. Steele, P.C. Malte, D.G. Nichol, J.C. Kramlich “NOx and N2O in Lean-Premixed Jet Stirred Flames” Combustion and Flame, vol. 100, pp. 440-449, 1989
[32] N. H. Jones “The Impact of the Entropy Inequality on Numerical Simulations Using Reduced Methane-Air Reaction Mechanism” Texas A&M University, August, 2012
[33] B. Yan, Y. Wu, C. Liu, J.F. Yu, B. Li, Z.S. Li “Experimental and Modeling Study of Laminar Burning Velocity of Biomass Derived Gases/Air Mixtures” Int. J. Hydrogen Energy 36, pp. 3769-3777, 2011.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔