跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/09 21:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐嵩博
研究生(外文):Sung-Po Hsu
論文名稱:雷射二極體色輪模組之鍍層設計與應力分析
論文名稱(外文):The Effects of Coding Film Parameters on the Thermal and Stress Distributions of Glass-based Phosphor-converted Color Wheel
指導教授:光灼華
指導教授(外文):Kuang, Jao-Hwa
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:100
中文關鍵詞:移動式弧形熱源玻璃螢光色輪螢光體光熱轉換係數
外文關鍵詞:optical to heat converting coefficientglass-based phosphor-converted color wheelarc shape moving heat flux
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:1
為因應歐盟環保規範,原投影機之水銀投射燈具,已不許可使用,目前均改以高功率雷射二極體光源取代,但隨著白光雷射投影系統功率的增加,原本以矽膠為基材的螢光色輪因受限於高功率下高溫老化與黃化問題,因此衍生出以螢光玻璃取代矽膠基材的構想。本文利用有限元素法配合實驗與工程反算法,取得有限元素模擬所需之光-熱轉換係數與熱對流係數,進行玻璃螢光色輪之熱傳與熱應力模擬,探討不同操作條件與幾何參數下玻璃螢光色輪在高功率藍光雷射下之熱傳與熱應力效應,並選擇具代表性的參數組合進行熱傳-熱應力耦合之動態模擬。
文中涉及螢光體在高功率藍光雷射下轉換色光時之熱生成機制,故本文配合實驗溫度值推算 綠色螢光體與 黃色螢光體之光-熱轉換係數,做為雷射功率與熱源輸入之轉換依據。同時,為了縮短有限元素法計算動態熱傳-熱應力耦合模型所需之計算時間,本文提出一移動式弧形熱源,並針對其能量輸入與弧長大小進行探討,以達到近似實際投影系統之移動熱源輸入效果。數值結果顯示本文提出之有限元素架構,可成功探討螢光色輪在不同參數下之動/靜態溫度與熱應力分析。
由有限元素計算結果同時顯示,矽膠螢光色輪在本文中使用的功率與參數組合下,皆面臨矽膠老化的風險,而玻璃螢光體在操作條件下之最高溫度,僅玻璃轉化溫度之 左右,故可說明玻璃螢光色輪在高功率投影應用中之優勢。
Due to the environment consideration the mercury tube has been prohibited in Europe since 2000, then the phosphor doped silicone resin wheel was employed to convert the blue ray laser diode. However, the high temperature photonic decay and surface crack on the lens surface have degrade transmission significantly. The concept of replacing the encapsulant material of the phosphor layer from silicone to glass has been explored, recently.
In this study, the thermal effects of glass/silicone-based phosphor-converted color wheel (GP wheel/SP wheel) under different parameters and geometries are investigated. The thermal-structural coupling finite element model is employed to simulate the thermal and stress distributions in this thesis. In order to construct the finite element model, the experiments and engineering inverse approaches have been used to extract the optical to heat converting coefficient and the appropriate heat convection coefficient.
An arc shape moving input heat flux is proposed to simulate the moving laser input and to reduce the calculation time of the finite element model. According to the numerical and experimental results, the finite element model provided in this thesis is capable of simulating the steady/transient behavior of the resin and GP wheel. The results also reveal that thermal failures are very likely to occur to the SP wheel under all the parameters used in this thesis, but the maximum temperature of the GP wheel only reaches about 40% of the glass transition temperature. Numerical results reveal that the GP wheel may be a good choice to overcome all these thermal disadvantages in a high power laser lighted projector.
謝誌 i
摘要 ii
Abstract iii
Content iv
List of figures vi
List of tables x
Nomenclature xi
Chapter 1 Introduction 1
1.1 Background information and motivation 1
1.2 Literature review 7
1.3 Organization of the thesis 8
Chapter 2 Associated Theories and Finite Element Model 10
2.1 Associated Theories 10
2.1.1 The spontaneous Raman Effect 10
2.1.2 Heat absorption coefficients 14
2.1.3 The construction of uniform laser source 17
2.2 Finite Element Model and Assumptions 21
2.2.1 The geometry and material properties of GP wheel 21
2.2.2 Fixed displacements and rotation boundary condition 26
2.2.3 Laser input/heat flux input condition 29
2.2.4 Heat convection boundary condition 39
2.2.5 The numerical convergence test of the finite element model 41
Chapter 3 Engineering Inversing Techniques and Simulation Results 46
3.1 Engineering inversing techniques 46
3.1.1 Measurements of heat absorption coefficient 46
3.1.2 The modifications of finite element model 50
3.2 Numerical results 55
3.2.1 Thermal analysis under steady state condition 59
3.2.2 Stress analysis under steady state condition 75
Chapter 4 Conclusions 81
4.1 Conclusions 81
4.2 Further works 82
Reference 83
[1]Inner structure of a Casio projector, (http://www.jd-bbs.com/thread-2312456-1-1.html)
[2]Chang, J. K., Cheng, W. C., Chang, Y. P., Kuo, Y. Y., Tsai, C. C., Huang, Y. C., Chen, L. Y., Cheng, W. H., “Next-generation glass-base phosphor-converted laser light engine,” Proc. SPIE 9571, Fourteenth International Conference on Solid State Lighting and LED-based Illumination Systems, 2015.
[3]Cheng, W. H., Tsai, C. C., and Wang , J., “Lumen degradation and chromaticity shift in glass and silicone based high-power phosphor-converted white-emitting diodes under thermal tests,” 11th International Conference on Solid State Lighting, San Diego, USA, August 21, 2011.
[4]Huang, P. C., “Temperature and Thermal Stress Distributions on High Power Phosphor Doped Glass LED Modules,” M.S. thesis, National Sun Yat-sen University, Kaohsiung, 2012.
[5]Chewpraditkul, W., Swiderski, L., Moszynski, M., Szczesniak, T., Syntfeld-Kazuch, A., Wanarak, C., and Limsuwan, P., “Scintillation Properties of LuAG: Ce, YAG: Ce and LYSO: Ce Crystals for Gamma-Ray Detection,” IEEE Transactions on Nuclear Science, vol. 56, No. 6, December, 2009.
[6]Comanzo, H. A., “Aluminum fluoride flux synthesis method for producing cerium doped YAG,” US6409938 B1, 2000.
[7]S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of Transparent Ce:YAG ceramic phosphors for white LED,” Journal of Optical Materials, vol. 33, pp. 688-691, 2011.
[8]H. L. Li, X. J. Liu, and L. P. Huang, “Luminescent properties of LuAG:Ce phosphors with different Ce contents prepared by a sol-gel combustion method,” Optical Materials, vol. 29, pp. 1138-1142, 2006.
[9]Barton, D. L., “Degradation of blue AlGaN/InGaN/GaN LEDs subjected to high current pulses,” Reliability Physics Symposium, 33rd Annual Proceedings., pp. 191-199, April, 1995.
[10]Lo, Y. T., “The Study of Radiation Pattern and Electricity for High-Power Blue LED in Acceleration Aging Test,” M.S. thesis, National Sun Yat-sen University, Kaohsiung, 2008.
[11]McIntosh, K. R., Cotsell, J. N., Cumpston, J. S., Norris, A. W., Powell, N. E., and Ketola, B. M., “The Effect of Accelerated Aging Tests on the Optical Properties of Silicone and EVA encapsulants,” Dow Corning Corporation, Midland, Michigan 48686, USA, 2009.
[12]Tsai, C. C., “The Reliability Study of Optical Power and Radiation Pattern for High-Power Light-Emitting Diodes Modules in Aging Test,” PhD thesis, National Sun Yat-sen University, Kaohsiung, 2009.
[13]Chung, C. H., “The Study of Ce:YAG Doped Glass Fabrication and Reliability Tests in High-Power White Light-Emitting Diodes,” M.S. thesis, National Sun Yat-sen University, Kaohsiung, 2010.
[14]Kuo, Y. Y., “The Study and Design of Antireflection Coating on Glass Phosphor,” M.S. thesis, National Sun Yat-sen University, Kaohsiung, 2015.
[15]Wu, S. T., “A Study on the Thermal Effect of Laser Diode Color Wheel,” M.S. thesis, National Sun Yat-sen University, Kaohsiung, 2014.
[16]Chang, J. K., “Investigation of glass phosphor with color conversion capability for solid-state white lightings,” PhD thesis, National Sun Yat-sen University, Kaohsiung, 2016.
[17]Hecht, E., Optics, 4th edition, Addison-Wesley, USA, 2002.
[18]TCO, Taiwan Color Optics, Inc.
[19]Parsons, R., “1997 Ashrae Handbook Fundamentals Si edition,” Atlanta, GA: ASHRAE, 1997.
[20]Lee, H. and Nenille, K., “Handbook of Epoxy Resins,” McGraw-Hill, Taipei, 1984.
[21]The material properties of transparent glass, SCHOTT AG, (www.schott.com).
[22]Lin, Y. K., “Degradation Analysis of High Power LED Device in High Temperature Acceleration Aging Test,” M.S. thesis, National Sun Yat-sen University, Kaohsiung, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top