(44.192.10.166) 您好!臺灣時間:2021/03/06 03:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡東益
研究生(外文):Dong-yi Cai
論文名稱:鈦合金/碳纖維/聚醚醚銅/克維拉纖維複合材料積層板承受低速衝擊後之機械性質探討
論文名稱(外文):Mechanical Properties of Ti/APC-2/Kevlar Composite Laminates due to Low-Velocity Impact
指導教授:任明華任明華引用關係
指導教授(外文):Ming-Hwa R. Jen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:142
中文關鍵詞:克維拉低速衝擊拉伸ANSYS/LS-DYNA鈦合金碳纖維/聚醚醚酮
外文關鍵詞:TitaniumANSYS/LS-DYNAKevlarLow velocity impactTensile testAPC-2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本論文主要目的為探討鈦合金/碳纖維/聚醚醚酮(Ti/APC-2)/克維拉/環氧樹脂複材積層板在室溫下承受低速衝擊後機械性質之變化。
實驗中所使用之試片為三層試片[Ti/(0/90)s/Ti]、五層試片[Ti/(0/90)2/Ti]s,以及九層試片[Ti/Kevlar/Ti/(0/90)2/Ti]s,其中APC-2之疊序為十字疊(Cross-ply)。首先對鈦金屬板進行鉻酸陽極處理,再利用隔膜成形法進行熱壓,製成鈦合金/碳纖維/聚醚醚酮三、五層複材積層板,再利用真空轉注成形在五層積層板上添加克維拉纖維製成鈦合金/碳纖維/聚醚醚酮/克維拉/環氧樹脂九層複材積層板。
電腦模擬使用ANSYS在衝頭直徑10 mm,重量5公斤與10公斤以及不同高度的衝擊模擬,接著實際實驗採用落重式衝擊試驗,衝頭尺寸與重量皆與模擬相同而衝擊高度則由電腦模擬轉換成實際衝擊高度直到試片穿透或達到1.50公尺,衝擊後在進行靜態拉伸試驗獲得到衝擊後積層板的機械性質
由實驗結果分析,試片底部鈦合金較頂部鈦合金吸收較多內能而產生裂痕且穿透時試片開口呈現花瓣型,且衝擊後試片的極限強度有大幅度下降但在穿透後會略微上升,而初始縱向柔度隨衝擊高度提高而上升但在穿透後會略為下降,且並非越厚的試片的殘留強度越大。模擬結果相較於實際衝擊結果來得嚴謹,能夠在未做實驗時提供初步的參考值。
ABSTRACT
This thesis aims to investigate the mechanical properties of Ti/APC-2/ Kevlar/ epoxy composite laminates after low velocity impact at room temperature. There were three types of samples tested, including three layers composite laminates [Ti/(0/90)s/Ti], five layers composite laminates [Ti/(0/90)2/Ti]s and nine layers composites laminate [Ti/Kevlar/Ti/(0/90)2/Ti]s. The lay-ups of APC-2 were stacked in a way of cross-ply sequences, while Ti layer is anodized with chromic acid anodic method. Ti and APC-2 are combined together to fabricate the composite laminates via hot press curing process. Kevlar layers were added to fiver-layer composite laminates to fabricate nine-layer composite laminates via vacuum assisted resin transfer molding.
The drop-weight tests were conducted with a hemispherical nosed projectile in 10 mm diameter. The impact loads were 5kg and 10kg according to the simulated results by ANSYS. The impact height increases until the samples were penetrated or the height reached the maximum height, 1.50 m, of our instrument. The static tensile tests were used to measure the composite laminates’ residual mechanical properties after the impact testing.
The results showed that the bottom Ti layer absorbed more internal energy than the top Ti layer, so the crack was found on the bottom Ti layer more often. The crack shape was the opening that resembling petal after the penetration. Also, the ultimate tensile strength reduced significantly after the impact, and it raised slightly after the samples penetrated. The initial longitudinal compliance increased with the impact height increasing and decreased after the samples penetrated. The experimental data showed that the numerical simulation outcome was more serious than the data of tests. Thus, the results of simulation can be adopted in application in the case of no testing data available.
目錄
論文審定書 i
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
表目錄 viii
圖目錄 xiii
第一章 緒論 1
1-1 前言 1
1-2 複合材料概述 1
1-3 研究方向 2
1-4 文獻回顧 2
1-5 組織章程 3
第二章 研製試片與實驗 4
2-1 實驗材料介紹 4
2-1-1 鈦合金 4
2-1-2碳纖維/聚醚迷酮預浸布 APC-2(AS-4/PEEK) 4
2-1-3 克維拉(Kevlar) 5
2-2 儀器設備 5
2-3 鈦合金/碳纖維/聚醚醚銅(TI/APC-2)/KEVLAR/EPOXY複材積層板之製程 6
2-3-1鈦合金前處理 6
2-3-2 APC-2前處理 7
2-3-3 高溫高壓製程 8
2-3-4 真空樹脂轉注(VARTM)製程 9
2-3-5 試片製作與分類 10
2-4 衝擊試驗與靜態拉伸試驗 10
2-4-1 衝擊試驗 10
2-4-2 靜態拉伸試驗 11
第三章 數值模擬 16
3-1 理論基礎 16
3-1-1 非線性理論 16
3-1-2 複合材料破壞準則 17
3-2 ANSYS/LS-DYNA簡介 18
3-3 有限元素模型建立 19
3-3-1 使用單位 19
3-3-2 材料參數 19
3-3-3 建立模型 20
3-3-4 邊界條件 20
3-3-5 後處理器 20
3-3-6 失效準則 21
3-4 分析過程 23
3-5 模擬結果 25
第四章 衝擊實驗 40
4-1 理論基礎 40
4-1-1 複合材料積層板能量吸收理論 40
4-2 模擬高度與實際衝擊高度 41
4-3 模擬與實際衝擊試驗結果 42
第五章 靜態拉伸實驗 54
5-1 靜態拉伸方法 54
5-2 靜態拉伸結果 54
5-2-1 不同混合試片比較 54
第六章 分析與討論 95
6-1 TI/APC-2、TI/APC-2/KEVLAR/EPOXY 積層板之混和理論 95
6-1-1 混合理論 95
6-1-2 極限強度實驗值與混合理論比較 95
6-2 TI/APC-2、TI/APC-2/KEVLAR/EPOXY複材積層板衝擊拉伸實驗結果分析 96
6-2-1 試片觀察與分析 96
6-2-2 試片拉伸結果分析 97
6-3 複材積層板數值模擬與實際衝擊結果分析 100
參考文獻 113
附錄一 材料性質表 116
附錄二 儀器設備 119
參考文獻
[1]Karger-Kocsis, J., Yuan, Q., Mayer, J., Wintermantel, E. (1997). Transverse impact behavior of knitted carbon-fiber fabric-reinforced thermoplastic composite sheets. Journal of Thermoplastic Composite Materials, 163-172.
[2]Siow, Y. P., Shim, V. P. W. (1998). An experimental study of low velocity impact damage in woven fiber composite. Journal of Composite Materials-Lancaster, 1178-1102.
[3]Tai, N. H., Yip, M. C., Lin, J. L. (1998). Effects of low-energy impact on the fatigue behavior of carbon/epoxy composites. Composite Science and Technology, 58(1), 1-8.
[4]Antoinat, L., Kubler, R., Achard, G., Barou, JL., Viot, P., Barralier, L. (2013). Low velocity perforation of an aluminum ally: experiments and simulations. 13th International Conference on Fracture.
[5]Gustin, J., Joneson, A., Mahinfalah, M., Stone, J. (2005). Low velocity impact of combination Kevlar/carbon fiber sandwich composites. Composite Structures, 69(4), 396-406.
[6]Nakatani, H., Kosaka, T., Osaka, K., Sawada, Y. (2011). Damage characterization of titanium/GFRP hybrid laminates subjected to low-velocity impact. Composites Part A: Applied Science and Manufacturing, 42(7), 772-781.
[7]Potti, S. V., Sun, C. T. (1997). Prediction of impact induced penetration and delamination in thick composite laminates. International Journal of Impact Engineering, 19(1), 31-38.
[8]Dan-Jumbo, E., Leewood, A. R. and Sun, C. T. “Impact Damage Characteristics of Bismaleimides and Thermoplastic Composite Laminates,” Composite Materials: Fatigue and Fracture, Second Volume, ASTM STP 1012, Paul A. Lagace, Ed., American Society for Testing and Materials, Philadelphia, pp.354~372, 1989
[9]Prichard, J. C., Hogg, P. J. (1990). The role of impact damage in post-impact compression testing. Composites, 21(6), 503-511.
[10]Nasirzadeh, R., Sabet, A. R. (2014). Study of foam density variations in composite sandwich panels under high velocity impact loading. International Journal of Impact Engineering, 63, 129-139.
[11]Ghalami-Choobar, M., Sadighi, M. (2014). Investigation of high velocity impact of cylindrical projectile on sandwich panels with fiber–metal laminates skins and polyurethane core. Aerospace Science and Technology, 32(1), 142-152.
[12]Manes, A., Gilioli, A., Sbarufatti, C., Giglio, M. (2013). Experimental and numerical investigations of low velocity impact on sandwich panels. Composite Structures, 99, 8-18.
[13]Garcia-Gonzalez, D., Rodriguez-Millan, M., Rusinek, A., Arias, A. (2015). Investigation of mechanical impact behavior of short carbon-fiber-reinforced PEEK composites. Composite Structures, 133, 1116-1126.
[14]Garcia-Gonzalez, D., Rusinek, A., Jankowiak, T., Arias, A. (2015). Mechanical impact behavior of polyether–ether–ketone (PEEK). Composite Structures, 124, 88-99.
[15]劉俊吾. (2009). 鈦金屬/碳纖維/聚醚醚酮複材積層板之研製與機械性質探討. 國立中山大學, 高雄市.
[16]陳金冠. (2012). 鈦合金/碳纖維/聚醚醚酮奈米複材積層板承受低速衝擊後疲勞作用與機械性質探討. 國立中山大學, 高雄市.
[17]劉上盟. (2013). 鈦合金/碳纖維/聚醚醚酮混合型複合材料積層板承受高速衝擊後之數值分析. 國立中山大學, 高雄市.
[18]賴冠樺. (2013). 碳纖維/聚醚醚酮複合材料積層板承受高速衝擊後之數值模擬. 國立中山大學, 高雄市.
[19]陳尚鵬. (2014). 鈦合金/聚碳酸酯/碳纖維/聚醚醚酮/克維拉混合型複合材料積層板承受高速衝擊後之數值分析. 國立中山大學, 高雄市.
[20]李依靜. (2015). 鈦合金/碳纖維/聚醚醚酮混和型複合材料受低速衝擊後之殘留性質討論. 國立中山大學, 高雄市.
[21]顏煜峰. (2016). 雙邊傾斜裂縫鈦合金/碳纖維/聚醚醚酮複材積層板之疲勞破壞與殘留壽命探討. 國立中山大學, 高雄市.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔