|
[1]D. Sun, Ph. D. 2012 Challenges and Opportunities for High Power White LED Development, 2012, Available at: http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/sun_development_2012rdworkshop.pdf., 10/21/2014 [2]國科會工程技術發展處能源學門, 102年度能源學門重點規劃書, 2013, Available at: http://www.etop.org.tw/dsp/E72.php?c=dspfile&id=YTUyNTYyNzdjYTZjYjJjZTA5ZGE1NTk1YmE3ZDI3N2MucGRm, 10/21/2014 [3]L. l. smart, LED & Lighting Glossary, 2013, Available at: http://www.ledlightsmart.co.uk/led-and-lighting-glossary.html, 12/09/2013 [4]Wikipedia, Nick Holonyak, 2014, Available at: http://en.wikipedia.org/wiki/Nick_Holonyak#cite_note-chisuntimes-1, 10/16/2014 [5]CREE, Cree® XLamp® Long-Term Lumen Maintenance, 2009, Available at: https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CDIQFjAB&url=http://www.avsforum.com/attachments/11092&ei=XvNGVOjrBsbAmAXwpoDYAw&usg=AFQjCNHKo1Hiw9RkOoo-N4AFM-QIxx1EZQ&sig2=PTgNkNYO8mKzqMUmzFUxGA&bvm=bv.77880786,d.dGY&cad=rja, 10/22/2014 [6]S. S. Hsieh, T. C. Fan, and H. H. Tsai, "Spray cooling characteristics of water and R-134a. Part I: nucleate boiling." International Journal of Heat and Mass Transfer, Vol. 47, 2004, pp. 5703-5712. [7]S. S. Hsieh, T. C. Fan, and H. H. Tsai, "Spray cooling characteristics of water and R-134a. Part II: transient cooling." International Journal of Heat and Mass Transfer, Vol. 47, 2004, pp. 5713-5724. [8]J. Kim, "Spray cooling heat transfer: The state of the art." International Journal of Heat and Fluid Flow, Vol. 28, 2007, pp. 753-767. [9]L. Lin and R. Ponnappan, "Heat transfer characteristics of spray cooling in a closed loop." International Journal of Heat and Mass Transfer, Vol. 46, 2003, pp. 3737-3746. [10]A. G. Pautsch and T. A. Shedd, "Spray impingement cooling with single- and multiple-nozzle arrays. Part I: Heat transfer data using FC-72." International Journal of Heat and Mass Transfer, Vol. 48, 2005, pp. 3167-3175. [11]T. A. Shedd and A. G. Pautsch, "Spray impingement cooling with single- and multiple-nozzle arrays. Part II: Visualization and empirical models." International Journal of Heat and Mass Transfer, Vol. 48, 2005, pp. 3176-3184. [12]L. H. J. Wachters and N. A. J. Westerling, "The heat transfer from a hot wall to impinging water drops in the spheroidal state." Chemical Engineering Science, Vol. 21, 1966, pp. 1047-1056. [13]W. M. Grissom and F. A. Wierum, "Liquid spray cooling of a heated surface." International Journal of Heat and Mass Transfer, Vol. 24, 1981, pp. 261-271. [14]K. J. Choi and S. C. Yao, "Mechanisms of film boiling heat transfer of normally impacting spray." International Journal of Heat and Mass Transfer, Vol. 30, 1987, pp. 311-318. [15]M. Ghodbane and J. P. Holman, "Experimental study of spray cooling with Freon-113." International Journal of Heat and Mass Transfer, Vol. 34, 1991, pp. 1163-1174. [16]M. R. Pais, L. C. Chow, and E. T. Mahefkey, "Surface Roughness and Its Effects on the Heat Transfer Mechanism in Spray Cooling." Journal of Heat Transfer, Vol. 114, 1992, pp. 211-219. [17]K. A. Estes and I. Mudawar, "Correlation of sauter mean diameter and critical heat flux for spray cooling of small surfaces." International Journal of Heat and Mass Transfer, Vol. 38, 1995, pp. 2985-2996. [18]S. Chandra, M. di Marzo, Y. M. Qiao, and P. Tartarini, "Effect of liquid-solid contact angle on droplet evaporation." Fire Safety Journal, Vol. 27, 1996, pp. 141-158. [19]I. Mudawar and K. A. Estes, "Optimizing and Predicting CHF in Spray Cooling of a Square Surface." Journal of Heat Transfer, Vol. 118, 1996, pp. 672-679. [20]J. D. Bernardin, C. J. Stebbins, and I. Mudawar, "Mapping of impact and heat transfer regimes of water drops impinging on a polished surface." International Journal of Heat and Mass Transfer, Vol. 40, 1997, pp. 247-267. [21]K. Oliphant, B. W. Webb, and M. Q. McQuay, "An experimental comparison of liquid jet array and spray impingement cooling in the non-boiling regime." Experimental Thermal and Fluid Science, Vol. 18, 1998, pp. 1-10. [22]K. i. Yoshida, Y. Abe, T. Oka, Y. H. Mori, and A. Nagashima, "Spray Cooling Under Reduced Gravity Condition." Journal of Heat Transfer, Vol. 123, 2000, pp. 309-318. [23]M. Arik, J. Petroski, and S. Weaver, "Thermal challenges in the future generation solid state lighting applications: light emitting diodes." Thermal and Thermomechanical Phenomena in Electronic Systems, Vol. 2002, pp. 113-120. [24]N. Narendran, L. Deng, R. M. Pysar, Y. Gu, and H. Yu, "Performance characteristics of high-power light-emitting diodes." Vol. 5187, 2004, pp. 267-275. [25]T. Acikalin, S. V. Garimella, J. Petroski, and A. Raman, "Optimal design of miniature piezoelectric fans for cooling light emitting diodes." Thermal and Thermomechanical Phenomena in Electronic Systems, Vol. 1, 2004, pp. 663-671. [26]Z. Kai, X. Guo Wei, W. Cell, G. Hong Wei, M. M. F. Yuen, P. C. H. Chan, and B. Xu, "Study on Thermal Interface Material with Carbon Nanotubes and Carbon Black in High-Brightness LED Packaging with Flip-Chip." Electronic Components and Technology Conference, Vol. 2005, pp. 60-65. [27]C. Jen Hau, L. Chun Kai, C. Yu Lin, and T. Ra Min, "Cooling performance of silicon-based thermoelectric device on high power LED." Thermoelectrics, 2005. ICT 2005. 24th International Conference on, Vol. 2005, pp. 53-56. [28]C. C. Hsieh and S. C. Yao, "Evaporative heat transfer characteristics of a water spray on micro-structured silicon surfaces." International Journal of Heat and Mass Transfer, Vol. 49, 2006, pp. 962-974. [29]S. S. Hsieh and C. H. Tien, "R-134a spray dynamics and impingement cooling in the non-boiling regime." International Journal of Heat and Mass Transfer, Vol. 50, 2007, pp. 502-512. [30]L. Xiaobing and L. Sheng, "A Microjet Array Cooling System for Thermal Management of High-Brightness LEDs." Advanced Packaging, IEEE Transactions on, Vol. 30, 2007, pp. 475-484. [31]M. R. O. Panão and A. L. N. Moreira, "Heat transfer correlation for intermittent spray impingement: A dynamic approach." International Journal of Thermal Sciences, Vol. 48, 2009, pp. 1853-1862. [32]X. y. Lu, T. C. Hua, M. j. Liu, and Y. x. Cheng, "Thermal analysis of loop heat pipe used for high-power LED." Thermochimica Acta, Vol. 493, 2009, pp. 25-29. [33]T. Kristyadi, V. Deprédurand, G. Castanet, F. Lemoine, S. S. Sazhin, A. Elwardany, E. M. Sazhina, and M. R. Heikal, "Monodisperse monocomponent fuel droplet heating and evaporation." Fuel, Vol. 89, 2010, pp. 3995-4001. [34]Y. Deng and J. Liu, "A liquid metal cooling system for the thermal management of high power LEDs." International Communications in Heat and Mass Transfer, Vol. 37, 2010, pp. 788-791. [35]J. C. Wang, R. T. Wang, T. L. Chang, and D. S. Hwang, "Development of 30 Watt high-power LEDs vapor chamber-based plate." International Journal of Heat and Mass Transfer, Vol. 53, 2010, pp. 3990-4001. [36]J.-C. Wang, "Thermal investigations on LED vapor chamber-based plates." International Communications in Heat and Mass Transfer, Vol. 38, 2011, pp. 1206-1212. [37]W. L. Cheng, F. Y. Han, Q. N. Liu, and H. L. Fan, "Spray characteristics and spray cooling heat transfer in the non-boiling regime." Energy, Vol. 36, 2011, pp. 3399-3405. [38]W. L. Cheng, F. Y. Han, Q. N. Liu, R. Zhao, and H. l. Fan, "Experimental and theoretical investigation of surface temperature non-uniformity of spray cooling." Energy, Vol. 36, 2011, pp. 249-257. [39]J. Li, B. Ma, R. Wang, and L. Han, "Study on a cooling system based on thermoelectric cooler for thermal management of high-power LEDs." Microelectronics Reliability, Vol. 51, 2011, pp. 2210-2215. [40]P. Anithambigai, K. Dinash, D. Mutharasu, S. Shanmugan, and C. K. Lim, "Thermal analysis of power LED employing dual interface method and water flow as a cooling system." Thermochimica Acta, Vol. 523, 2011, pp. 237-244. [41]T. M. Roffi, I. Idris, K. Uchida, S. Nozaki, N. Sugiyama, H. Morisaki, and F. X. N. Soelami, "Improvement of high-power-white-LED lamp performance by liquid injection." Electrical Engineering and Informatics, Vol. 2011, pp. 1-6. [42]W. Hsun You, H. Cheng, and C. Chin Tai, "Specific design and implementation of a piezoelectric droplet actuator for evaporative cooling of free space." Nano/Micro Engineered and Molecular Systems Vol. 2012, pp. 419-422. [43]H. Bostanci, D. P. Rini, J. P. Kizito, V. Singh, S. Seal, and L. C. Chow, "High heat flux spray cooling with ammonia: Investigation of enhanced surfaces for CHF." International Journal of Heat and Mass Transfer, Vol. 55, 2012, pp. 3849-3856. [44]S. Chunqiang, S. Shuangquan, T. Changqing, and X. Hongbo, "Development and experimental investigation of a novel spray cooling system integrated in refrigeration circuit." Applied Thermal Engineering, Vol. 33–34, 2012, pp. 246-252. [45]Y. J. Gou, Z. L. Liu, C. M. Wang, and X. H. Zhong, "Experimental Study of Effect Factors on Performance of Heat Dissipation of HP Heat Exchanger for LED Cooling System." Advanced Materials Research, Vol. 490, 2012, pp. 2530-2533. [46]L. Wu, X. Y. Xiong, and D. X. Wang, "Efficient Heat Dissipation Design of High-Power Multi-Chip Cob Package Led Modules." Advanced Materials Research, Vol. 463, 2012, pp. 1332-1340. [47]B. H. Yang, H. Wang, X. Zhu, Q. Liao, Y. D. Ding, and R. Chen, "Heat transfer enhancement of spray cooling with ammonia by microcavity surfaces." Applied Thermal Engineering, Vol. 50, 2013, pp. 245-250. [48]J. Palacios, J. Hernández, P. Gómez, C. Zanzi, and J. López, "Experimental study of splashing patterns and the splashing/deposition threshold in drop impacts onto dry smooth solid surfaces." Experimental Thermal and Fluid Science, Vol. 44, 2013, pp. 571-582. [49]K. A. Ramisetty, A. B. Pandit, and P. R. Gogate, "Investigations into ultrasound induced atomization." Ultrasonics Sonochemistry, Vol. 20, 2013, pp. 254-264. [50]J. Li, F. Lin, D. Wang, and W. Tian, "A loop-heat-pipe heat sink with parallel condensers for high-power integrated LED chips." Applied Thermal Engineering, Vol. 56, 2013, pp. 18-26. [51]I. Y. Chen, M. Z. Guo, K. S. Yang, and C. C. Wang, "Enhanced cooling for LED lighting using ionic wind." International Journal of Heat and Mass Transfer, Vol. 57, 2013, pp. 285-291. [52]S.-S. Hsieh, Y.-F. Hsu, and M.-L. Wang, "A microspray-based cooling system for high powered LEDs." Energy Conversion and Management, Vol. 78, 2014, pp. 338-346. [53]S. Somasundaram and A. A. O. Tay, "A study of intermittent liquid nitrogen sprays." Applied Thermal Engineering, Vol. 69, 2014, pp. 199-207. [54]S. J. Thiagarajan, S. Narumanchi, and R. Yang, "Effect of flow rate and subcooling on spray heat transfer on microporous copper surfaces." International Journal of Heat and Mass Transfer, Vol. 69, 2014, pp. 493-505. [55]C. M. Kim and Y. T. Kang, "Cooling performance enhancement of LED (Light Emitting Diode) using nano-pastes for energy conversion application." Energy, Vol. 76, 2014, pp. 468-476. [56]J. C. Wang, "Thermal module design and analysis of a 230 W LED illumination lamp under three incline angles." Microelectronics Journal, Vol. 45, 2014, pp. 416-423. [57]Y. Tang, X. Ding, B. Yu, Z. Li, and B. Liu, "A high power LED device with chips directly mounted on heat pipes." Applied Thermal Engineering, Vol. 66, 2014, pp. 632-639. [58]Q. Li, P. Tie, and Y. Xuan, "Investigation on heat transfer characteristics of R134a spray cooling." Experimental Thermal and Fluid Science, Vol. 60, 2015, pp. 182-187. [59]H. Chen, W.-l. Cheng, Y.-h. Peng, W.-w. Zhang, and L.-j. Jiang, "Experimental study on optimal spray parameters of piezoelectric atomizer based spray cooling." International Journal of Heat and Mass Transfer, Vol. 103, 2016, pp. 57-65. [60]Z.-F. Zhou, R. Wang, B. Chen, T. Yang, and G.-X. Wang, "Heat transfer characteristics during pulsed spray cooling with R404A at different spray distances and back pressures." Applied Thermal Engineering, Vol. 102, 2016, pp. 813-821. [61]H. Bostanci, B. He, and L. C. Chow, "Spray cooling with ammonium hydroxide." International Journal of Heat and Mass Transfer, Vol. 107, 2017, pp. 45-52. [62]M. C. J. Coolen, R. N. Kieft, C. C. M. Rindt, and A. A. van Steenhoven, "Application of 2-D LIF temperature measurements in water using a Nd : YAG laser." Experiments in Fluids, Vol. 27, 1999, pp. 420-426. [63]D. Ross, M. Gaitan, and L. E. Locascio, "Temperature Measurement in Microfluidic Systems Using a Temperature-Dependent Fluorescent Dye." Analytical Chemistry, Vol. 73, 2001, pp. 4117-4123. [64]Bauckhage, Klaus, "Science and Engineering of Droplets". William Andrew Publishing. 1999. [65]J. R. Taylor, "An Introduction to Error Analysis: the study of uncertainties in physical measurements" 2nd ed. University Science Book. 1997.
|