跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/07 22:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林招焯
研究生(外文):Jau-Cho Lin
論文名稱:空氣中聲波遮蔽層材料之設計與實驗研究
論文名稱(外文):Design and Experimental Research of Acoustic Cloak in the Air
指導教授:楊旭光楊旭光引用關係
指導教授(外文):Shiuh-Kuang Yang
學位類別:博士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:166
中文關鍵詞:聲波超常材料變換聲學聲波隱形聲波遮蔽超常材料
外文關鍵詞:acoustic metamaterialacoustic invisibilitymetamaterialacoustic cloakstransformation acoustic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:1
波傳行為控制技術之相關研究為近來科學界熱門且具高發展潛力之領域,其研究成果可應用於噪音之阻絕、波傳通信、或達成聲場遮蔽隱形物體之目的。其中於空氣中聲波遮蔽之相關研究,亦為未來高性能吸隔音材料研發與聲波控制等實務應用上的重要課題。傳統噪音控制方法所採用之吸、隔音機制,係依賴隔音材料之阻絕或吸收聲波特性達成,具有重量大、無法針對特定頻率控制與高成本之缺點。近來由於聲波遮蔽理論提出及超常材料等之長足發展,藉由此類創新技術理論為基礎,可應用於空氣中聲波遮蔽控制之研究,以導引聲波避開物體之新策略,開發創新之隔音技術與材料。本論文主要係針對空氣中聲波之遮蔽方法理論探討、遮蔽材料設計、及數值模擬與實驗驗證等作一系列之研究,採用空間座標轉換理論方法為基礎進行聲波遮蔽研究以及遮蔽層材料之研發。
本研究藉由相關理論發展三維座標轉換方法,設計出所需之非均質等向材料特性之遮蔽層材料參數,並利用聲學原理提出一結合空腔與管路組合而成之超常材料構造,利用此構造可設計所需之複雜材料參數之聲波遮蔽層。研究中分別設計橢圓及圓形兩不同形狀之遮蔽層,並經由數值分析與實際實驗驗證其對聲波之遮蔽效果。在橢圓遮蔽層部分,模擬結果驗證遮蔽於1/3倍頻帶800 至 1250 Hz區域內具有聲波遮蔽效果,同時說明了相關遮蔽層設計具有引導聲波依預設之路徑傳播之特性。而在圓形遮蔽層部分,則於設計頻率1000 Hz處得到實際之遮蔽效果。實驗部分係由本論文設計之圓形遮蔽層構造參數,繪製遮蔽層超常材料構造之三維設計圖,使用3D列印方式,印製及組合完成實際構造以進行實驗驗證。由於實驗試體幾何尺寸過大,實驗設計採用不同頻率聲波衰減率相異之關係,由模型實驗法採縮尺試體於半無響室內進行聲場量測,由所得之遠場可視度值與遮蔽層內聲場量測結果,實驗驗證了設計頻率1000 Hz聲波的遮蔽效果,並觀察到遮蔽層內聲場導引匯聚之現象,相關結果可與設計理論相互印證。
本論文內容提供空氣音聲波遮蔽材料設計策略,提出可實際實現遮蔽效果之超常材料構造及其設計方法,並藉由數值模擬分析及實驗驗證聲波遮蔽效果,成果可提供空氣中聲波遮蔽材之應用以及改良傳統隔音降噪技術之參考。
The issue of random controlling wave propagation is very popular in the research literature. The techniques for controlling wave propagation can avoid unwanted wave disturbance, help control a specific wave to randomly propagate, and hide the object free from detection. The sound insulation performances of a traditional sound proof industrial element are based on the mass density of the object. Therefore, high sound insulation elements always come at the high cost, great volume, and heavy weight. The theories of acoustic cloak and metamaterials driven by new discoveries in recent decades have supplied the potential for developing novel strategies and new technologies in the control of acoustic noise. This study investigated the cloak of air borne acoustic wave based on the recently proposed theories of coordinate transformation and researches the design, fabrication and experimental analysis of acoustic cloak shell for meta-composite material in air applications.
The material properties of three-dimensional (3D) cloak shell were developed according to the spatial transformation in three directions of a geometry coordinate system. Depending on the derived material properties, the anisotropic material properties of a cloak shell could be obtained. To realize the acoustic cloak, the designed tube-cavity meta-composite structure formulized the layered structure for the cloak shell. Cloak shell structures provide the anisotropic material properties of a cloak shell and control the acoustic wave propagation through its structural geometric design. Both elliptical and circle cloak shells were designed and numerically evaluated herein.
The analysis of plane waves passing through the elliptical cloak shell explains the effectiveness of the meta-composite material in its acoustic cloaking performance over a frequency range of 800 to 1250 Hz in 1/3 octave band. The results demonstrated that anisotropic properties of the proposed cloak make it possible to alter the direction of acoustic waves propagating from the original path and direct them to travel along a pre-determined path. In addition, the circle cloak shell also provides acoustic invisibility in 1000 Hz. According to the dimension parameters of the cloak shell structure, the full 3D diagram of a meta-composite cloak circle shell was plotted and the real cloak shell specimen was manufactured by the 3D print technique for experimental evaluation. The experiment analyzed the acoustic cloak effect of a circle cloak shell in a semi-anechoic room under a free field environment. Experimental results demonstrate the effectiveness of the circle cloak shell in the air at a design frequency of 1000 Hz. The research results present a way to comply with anisotropic cloak shell for acoustic purposes. These research findings provide new strategies and coating structure design for the physical realization of an invisibility cloak in the air.
摘要 iii
ABSTRACT v
TABLE OF CONTENTS vii
LIST OF TABLES ix
LIST OF FIGURES x
NOMENCLATURE xiv
CHAPTER 1 INTRODUCTION 1
1.1 Research background and motivation 1
1.2 Development of wave cloak in EM and acoustic field 2
1.3 Acoustic cloak and related acoustic meta-materials 4
CHAPTER 2 ACOUSTIC CLOAK IN TRANSFORMATION ACOUSTICS 13
2.1 Methodology, of coordinate transformation and material properties 13
2.2 Developments of meta-composite materials for acoustic cloak application 19
CHAPTER 3 DESIGN OF META-COMPOSITE STRUCTURE CLOAK SHELL BASED ON TRANSFORMATION ACOUSTICS 25
3.1 Formulation of cloak shells by coordinate transformation 25
3.1.1 Elliptical cloak shell 25
3.1.2 Circle cloak shell 31
3.2 Design of meta-composite element 33
3.3 Physical realization of the acoustic cloak shell with meta-composite element 36
3.3.1 Elliptical cloak shell by meta-composite structures 36
3.3.2 Circle cloak shell by meta-composite structures 43
CHAPTER 4 NUMERICAL SIMULATION RESULTS 62
4.1 Three-dimensional numerical simulation using ANSYS 62
4.2 Wave field results and cloak effect of elliptical cloak shell 62
4.2.1 Wave field pattern and peak value result of scattering sound field 62
4.2.2 Average visibility values and wave guiding effect 70
4.3 Wave field results and cloak effect of circle cloak shell 74
4.3.1 Wave field pattern results of circle cloak shell 74
4.3.2 Average visibility values of circle cloaks 77
4.3.3 Acoustic cloak effect in the scattered field 80
CHAPTER 5 EXPERIMENTAL EVALUATION OF CLOAK EFFECT 108
5.1 Fabrication and experimental analysis of meta-composites cloak shell 108
5.2 Experiment results and discussion 111
CHAPTER 6 CONCLUSIONS AND FUTURE WORK 126
6.1 Conclusions 126
6.2 Future work 128
BIBLIOGRAPHY 131
APPENDIX A 135
APPENDIX B 145
1.V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of and ,” Soviet Physics Uspekhi, 10, 509-514, 1968.
2.R. A. Shelby, D. R. Smith, S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science, 292, 77-79, 2001.
3.J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Physical Review Letters, 85, 3966-3969, 2000.
4.J. B. Pendry, D. Schurig, D. R. Smith, “Controlling Electromagnetic Fields,” Science, 312, 1780-1782, 2006.
5.S. A. Cummer, D. Schurig, “One Path to Acoustic Cloak,” New Journal of Physics, 9, 45, 2007.
6.D. Torrent, J. Sánchez-Dehesa, “Acoustic Cloaking in Two Dimensions: A Feasible Approach,” New Journal of Physics, 10, 063015, 2008.
7.S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, A. Starr, “Scattering Theory Derivation of a 3D Acoustic Cloaking Shell,” Physical Review Letters, 100, 024301, 2008.
8.T. Chen, Y. L. Tsai “A Derivation for the Acoustic Material Parameters in Transformation Domains,” Journal of Sound and Vibration, 332, 766-779, 2013.
9.Y. I. Bobrovnitskii, “Impedance Acoustic Cloaking,” New Journal of Physics, 12, 043049 , 2010.
10.M. R. Alam, “Broadband Cloaking in Stratified Seas,” Physical Review Letters, 108, 084502, 2012.
11.Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, P. Sheng, “Locally Resonant Sonic Materials,” Science, 289, 1734-1736, 2000.
12.S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, C. K. Kim, “Acoustic Metamaterial with Negative Density,” Physics Letters A, 373, 4464-4469, 2009.
13.H. H. Huang, “On the Negative Effective Mass Density in Acoustic Metamaterials,” International Journal of Engineering Science, 47, 610-617, 2009.
14.A. Sukhovich, L. Jing, J. H. Page, “Negative Refraction and Focusing of Ultrasound in Two-Dimensional Phononic Crystals,” Physical Review B, 77, 014301, 2008.
15.Z. Yang, H. M. Dai, N. H. Chan, G. C. Ma, P. Sheng, “Acoustic Metamaterial Panels for Sound Attenuation in the 50-1000 Hz,” Applied Physics Letters, 96, 041906, 2010.
16.J. Zhu, J. Christensen, J. Jung, L. Martin-Moreno, X. Yin, L. Fok, X. Zhang, F. J. Garcia-Vidal, “A Holey-Structured Metamaterial for Acoustic Deep-Subwavelength Imaging,” Nature Physics, 7, 52, 2011.
17.S. Guenneau, A. Movchan, G. Pétursson, A. Ramakrishna, “Acoustic Metamaterial for Sound Focusing and Confinement,” New Journal of Physics, 9, 399, 2007.
18.D. Torrent, J. Sánchez-Dehesa, “Anisotropic Mass Density by Radically Periodic Fluid Structures,” Physical Review Letters, 105, 174301, 2010.
19.C. L. Ding, X. P. Zhao, “Multi-band and Broadband Acoustic Metamaterial with Resonant Structure,” Journal of Physics D: Applied Physics, 44, 215402, 2011.
20.S. Zhang, C. Xia, N. Fang, “Broadband Acoustic Cloak for Ultrasound Waves,” Physical Review Letters, 106, 024301, 2011.
21.S. Zhang, L. Yin, N. Fang, “Focusing Ultrasound with An Acoustic Metamaterial Network,” Physical Review Letters, 102, 194301, 2009.
22.A. N. Norris, A. J. Nagy, “Acoustic Metafluids,” Journal of the Acoustical Society of America, 125, 839-849, 2009.
23.A. N. Norris, A. J. Nagy, “Acoustic Metafluids Made from Three Acoustic Fluids,” Journal of the Acoustical Society of America, 128, 1606-1616, 2010.
24.J. B. Pendry, J. Li, “An Acoustic Metafluid: Realizing A Broadband Acoustic Cloak,” New Journal of Physics, 10, 115032, 2008.
25.D. Torrent, J. Sánchez-Dehesa, “Broadband Acoustic Cloaks Based on the Homogenization of Layered Materials,” Wave Motion, 48, 497-504, 2011.
26.J. Zhu, T. Chen, Q. Liang, X. Wang, J. Xiong, P. Jiang, “A Unidirectional Acoustic Cloak for Multilayered Background Media with Homogeneous Metamaterials,” Journal of Physics D: Applied Physics, 48, 305502, 2015.
27.T. Y. Huang, C. Shen, Y. Jing, “Membrane- and Plate- type Acoustic Metamaterials,” Journal of the Acoustical Society of America, 139, 3240-3250, 2016.
28.S. Babaee, J. T. B. Overvelde, E. R. Chen, V. Tournat, K. Bertoldi, “Reconfigurable Origami-inspired Acoustic Waveguides,” Science Advances, 2, e1601019, 2016.
29.J. Li, J. B. Pendry, “Hiding under the Carpet: A New Strategy for Cloaking,” Physical Review Letters, 101, 203901, 2008.
30.X. L. Zhang, X. Ni, M. H. Lu, “A Feasible Approach to Achieve Acoustic Carpet Cloak in Air,” Physics Letters A, 376, 493-496, 2012.
31.B. I. Popa, S. A. Cummer, “Design and Characterization of Broadband Acoustic Composite Metamaterials,” Physical Review B, 80, 174303, 2009.
32.L. Zigoneanu, B. I. Popa, A. F. Starr, S. A. Cummer, “Design and Measurements of Broadband Two-dimensional Acoustic Metamaterial with Anisotropic Effective Mass Density,” Journal of Applied Physics, 109, 054906, 2011.
33.W. Zhu, C. Ding, X. Zhao, “A Numerical Method for Designing Acoustic Cloak with Homogeneous Metamaterials,” Applied Physics Letters, 97, 131902, 2010.
34.B. I. Popa, L. Zigoneanu, S. A. Cummer, “Experimental Acoustic Ground Cloak in Air,” Physical Review Letters, 106, 253901, 2011.
35.L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, J. Sánchez-Dehesa, “Three-dimensional Axisymmetric Cloak Based on the Cancellation of Acoustic Scattering from a Sphere,” Physical Review Letters, 110, 124301, 2013.
36.G. Dupont, M. Farhat, A. Diatta, S. Guenneau, S. Enoch, “Numerical Analysis of Three-dimensional Acoustic Cloaks and Carpets,” Wave Motion, 48 483-496, 2011.
37.L. Zigoneanu, B. I. Popa, S. A. Cummer, “Three-dimensional Broadband Omni directional Acoustic Ground Cloak,” Nature Materials, 13, No.4, 352-355, 2014.
38.C. Faure, O. Richoux, S. Félix, V. Pagneux, “Experiments on Metasurface Carpet Cloaking for Audible Acoustics,” Applied Physics Letters, 108, 064103, 2016.
39.G. Ma, P. Sheng, “Acoustic Metamaterials: from Local Resonances to Broad Horizons,” Science Advances, 2, e1501595, 2016.
40.Y. I. Bobrovnitskii, “A Nonscattering Coating for a Cylinder,” Acoustical Physics, 54, 879-889, 2008.
41.Y. I. Bobrovnitskii, “A New Impedance-based Approach to Analysis and Control of Sound Scattering,” Journal of Sound and Vibration, 297, 743-760, 2006.
42.Y. I. Bobrovnitskii, “Theory of the New High-efficiency Absorbing and Non-scattering Coating,” Acoustical Physics, 53, 535-545, 2007.
43.K. Li, B. Liang, J. Yang, J. Yang, J. C. Cheng, “Acoustic Broadband Metacouplers,” Applied Physics Letters, 110, 203504, 2017.
44.R. F. Barron, Industrial Noise Control and Acoustics, Marcel Dekker, Inc., New York, Chap. 8, 330-405, 2003.
45.L. L. Beranek, Acoustics, American Institute of Physics, New York, Chap. 5, 128-143, 1986.
46.M. L. Munjal, Acoustics of Ducts and Mufflers with Application to Exhaust and Ventilation System Design, John Wiley & Sons, Inc., New York, Chap. 2, 42-54, 1987.
47.L. E. Kinsler, A. R. Frey, A. B. Coppens, J. V. Sanders, Fundamentals of Acoustics, John Wiley & Sons, Inc., New York, Chap. 10, 283-287, 1999.
48.ANSYS Inc., ANSYS Mechanical APDL Acoustic Analysis Guide, Released 14.0, 2013.
49.C. Q. Howard, B. S. Cazzolato, Acoustic Analyses Using MATLAB and ANSYS, CRC Press, New York, 13-15, 2014.
50.H. Kuttruff, Room Acoustics, Elsevier Science Publishers Ltd, Third Edition, 278-288, 1991.
51.R. V. Craster, S. Guenneau Editors, Acoustic Metamaterials, Springer, 141-239, 2013.
52.D. N. MacLennan and E. John Simmonds, Fisheries Acoustics, Chapman & Hall, first ed., Chap. 2, 20-34, 1992.
53.B. Banerjee, An Introduction to Metamaterials and Waves in Composites, CRC Press, New York, Chap. 3, 104-112, 2011.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top