|
1.V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of and ,” Soviet Physics Uspekhi, 10, 509-514, 1968. 2.R. A. Shelby, D. R. Smith, S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science, 292, 77-79, 2001. 3.J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Physical Review Letters, 85, 3966-3969, 2000. 4.J. B. Pendry, D. Schurig, D. R. Smith, “Controlling Electromagnetic Fields,” Science, 312, 1780-1782, 2006. 5.S. A. Cummer, D. Schurig, “One Path to Acoustic Cloak,” New Journal of Physics, 9, 45, 2007. 6.D. Torrent, J. Sánchez-Dehesa, “Acoustic Cloaking in Two Dimensions: A Feasible Approach,” New Journal of Physics, 10, 063015, 2008. 7.S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, A. Starr, “Scattering Theory Derivation of a 3D Acoustic Cloaking Shell,” Physical Review Letters, 100, 024301, 2008. 8.T. Chen, Y. L. Tsai “A Derivation for the Acoustic Material Parameters in Transformation Domains,” Journal of Sound and Vibration, 332, 766-779, 2013. 9.Y. I. Bobrovnitskii, “Impedance Acoustic Cloaking,” New Journal of Physics, 12, 043049 , 2010. 10.M. R. Alam, “Broadband Cloaking in Stratified Seas,” Physical Review Letters, 108, 084502, 2012. 11.Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, P. Sheng, “Locally Resonant Sonic Materials,” Science, 289, 1734-1736, 2000. 12.S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, C. K. Kim, “Acoustic Metamaterial with Negative Density,” Physics Letters A, 373, 4464-4469, 2009. 13.H. H. Huang, “On the Negative Effective Mass Density in Acoustic Metamaterials,” International Journal of Engineering Science, 47, 610-617, 2009. 14.A. Sukhovich, L. Jing, J. H. Page, “Negative Refraction and Focusing of Ultrasound in Two-Dimensional Phononic Crystals,” Physical Review B, 77, 014301, 2008. 15.Z. Yang, H. M. Dai, N. H. Chan, G. C. Ma, P. Sheng, “Acoustic Metamaterial Panels for Sound Attenuation in the 50-1000 Hz,” Applied Physics Letters, 96, 041906, 2010. 16.J. Zhu, J. Christensen, J. Jung, L. Martin-Moreno, X. Yin, L. Fok, X. Zhang, F. J. Garcia-Vidal, “A Holey-Structured Metamaterial for Acoustic Deep-Subwavelength Imaging,” Nature Physics, 7, 52, 2011. 17.S. Guenneau, A. Movchan, G. Pétursson, A. Ramakrishna, “Acoustic Metamaterial for Sound Focusing and Confinement,” New Journal of Physics, 9, 399, 2007. 18.D. Torrent, J. Sánchez-Dehesa, “Anisotropic Mass Density by Radically Periodic Fluid Structures,” Physical Review Letters, 105, 174301, 2010. 19.C. L. Ding, X. P. Zhao, “Multi-band and Broadband Acoustic Metamaterial with Resonant Structure,” Journal of Physics D: Applied Physics, 44, 215402, 2011. 20.S. Zhang, C. Xia, N. Fang, “Broadband Acoustic Cloak for Ultrasound Waves,” Physical Review Letters, 106, 024301, 2011. 21.S. Zhang, L. Yin, N. Fang, “Focusing Ultrasound with An Acoustic Metamaterial Network,” Physical Review Letters, 102, 194301, 2009. 22.A. N. Norris, A. J. Nagy, “Acoustic Metafluids,” Journal of the Acoustical Society of America, 125, 839-849, 2009. 23.A. N. Norris, A. J. Nagy, “Acoustic Metafluids Made from Three Acoustic Fluids,” Journal of the Acoustical Society of America, 128, 1606-1616, 2010. 24.J. B. Pendry, J. Li, “An Acoustic Metafluid: Realizing A Broadband Acoustic Cloak,” New Journal of Physics, 10, 115032, 2008. 25.D. Torrent, J. Sánchez-Dehesa, “Broadband Acoustic Cloaks Based on the Homogenization of Layered Materials,” Wave Motion, 48, 497-504, 2011. 26.J. Zhu, T. Chen, Q. Liang, X. Wang, J. Xiong, P. Jiang, “A Unidirectional Acoustic Cloak for Multilayered Background Media with Homogeneous Metamaterials,” Journal of Physics D: Applied Physics, 48, 305502, 2015. 27.T. Y. Huang, C. Shen, Y. Jing, “Membrane- and Plate- type Acoustic Metamaterials,” Journal of the Acoustical Society of America, 139, 3240-3250, 2016. 28.S. Babaee, J. T. B. Overvelde, E. R. Chen, V. Tournat, K. Bertoldi, “Reconfigurable Origami-inspired Acoustic Waveguides,” Science Advances, 2, e1601019, 2016. 29.J. Li, J. B. Pendry, “Hiding under the Carpet: A New Strategy for Cloaking,” Physical Review Letters, 101, 203901, 2008. 30.X. L. Zhang, X. Ni, M. H. Lu, “A Feasible Approach to Achieve Acoustic Carpet Cloak in Air,” Physics Letters A, 376, 493-496, 2012. 31.B. I. Popa, S. A. Cummer, “Design and Characterization of Broadband Acoustic Composite Metamaterials,” Physical Review B, 80, 174303, 2009. 32.L. Zigoneanu, B. I. Popa, A. F. Starr, S. A. Cummer, “Design and Measurements of Broadband Two-dimensional Acoustic Metamaterial with Anisotropic Effective Mass Density,” Journal of Applied Physics, 109, 054906, 2011. 33.W. Zhu, C. Ding, X. Zhao, “A Numerical Method for Designing Acoustic Cloak with Homogeneous Metamaterials,” Applied Physics Letters, 97, 131902, 2010. 34.B. I. Popa, L. Zigoneanu, S. A. Cummer, “Experimental Acoustic Ground Cloak in Air,” Physical Review Letters, 106, 253901, 2011. 35.L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, J. Sánchez-Dehesa, “Three-dimensional Axisymmetric Cloak Based on the Cancellation of Acoustic Scattering from a Sphere,” Physical Review Letters, 110, 124301, 2013. 36.G. Dupont, M. Farhat, A. Diatta, S. Guenneau, S. Enoch, “Numerical Analysis of Three-dimensional Acoustic Cloaks and Carpets,” Wave Motion, 48 483-496, 2011. 37.L. Zigoneanu, B. I. Popa, S. A. Cummer, “Three-dimensional Broadband Omni directional Acoustic Ground Cloak,” Nature Materials, 13, No.4, 352-355, 2014. 38.C. Faure, O. Richoux, S. Félix, V. Pagneux, “Experiments on Metasurface Carpet Cloaking for Audible Acoustics,” Applied Physics Letters, 108, 064103, 2016. 39.G. Ma, P. Sheng, “Acoustic Metamaterials: from Local Resonances to Broad Horizons,” Science Advances, 2, e1501595, 2016. 40.Y. I. Bobrovnitskii, “A Nonscattering Coating for a Cylinder,” Acoustical Physics, 54, 879-889, 2008. 41.Y. I. Bobrovnitskii, “A New Impedance-based Approach to Analysis and Control of Sound Scattering,” Journal of Sound and Vibration, 297, 743-760, 2006. 42.Y. I. Bobrovnitskii, “Theory of the New High-efficiency Absorbing and Non-scattering Coating,” Acoustical Physics, 53, 535-545, 2007. 43.K. Li, B. Liang, J. Yang, J. Yang, J. C. Cheng, “Acoustic Broadband Metacouplers,” Applied Physics Letters, 110, 203504, 2017. 44.R. F. Barron, Industrial Noise Control and Acoustics, Marcel Dekker, Inc., New York, Chap. 8, 330-405, 2003. 45.L. L. Beranek, Acoustics, American Institute of Physics, New York, Chap. 5, 128-143, 1986. 46.M. L. Munjal, Acoustics of Ducts and Mufflers with Application to Exhaust and Ventilation System Design, John Wiley & Sons, Inc., New York, Chap. 2, 42-54, 1987. 47.L. E. Kinsler, A. R. Frey, A. B. Coppens, J. V. Sanders, Fundamentals of Acoustics, John Wiley & Sons, Inc., New York, Chap. 10, 283-287, 1999. 48.ANSYS Inc., ANSYS Mechanical APDL Acoustic Analysis Guide, Released 14.0, 2013. 49.C. Q. Howard, B. S. Cazzolato, Acoustic Analyses Using MATLAB and ANSYS, CRC Press, New York, 13-15, 2014. 50.H. Kuttruff, Room Acoustics, Elsevier Science Publishers Ltd, Third Edition, 278-288, 1991. 51.R. V. Craster, S. Guenneau Editors, Acoustic Metamaterials, Springer, 141-239, 2013. 52.D. N. MacLennan and E. John Simmonds, Fisheries Acoustics, Chapman & Hall, first ed., Chap. 2, 20-34, 1992. 53.B. Banerjee, An Introduction to Metamaterials and Waves in Composites, CRC Press, New York, Chap. 3, 104-112, 2011.
|